
THE UNIVERSITY OF CALGARY

Grid Computing with Plan 9 – an Alternative
Solution for Grid Computing

by

Andrey A. Mirtchovski

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

May, 2005

�
Andrey A. Mirtchovski 2005

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Gradu-

ate Studies for acceptance, a thesis entitled “Grid Computing with Plan 9 – an Alternative

Solution for Grid Computing” submitted by Andrey A. Mirtchovski in partial fulfillment

of the requirements for the degree of Master of Science.

Dr. Robert William John Simmonds,

Department of Computer Science

Supervisor

Dr. John Aycock,

Department of Computer Science

Internal Examiner

Dr. Ronald G. Minnich,

Advanced Computing Lab, LANL

External Examiner

Dr. Lewis Joshua Leon,

Department of Electrical and Computer

Engineering

“Internal” External Examiner

Date

ii

Abstract

This thesis describes tools and utilities facilitating collaboration between geographically

separated computer installations. The goal of this research is to allow the set up of a

fully operational distributed computing environment, a testbed grid network called 9grid.

Compared to other software support for grids, the main benefits of 9grid are simplicity,

scalability and tight integration with the environment it serves.

This thesis describes the implementation of several tools which aid computation across

administrative domains. These tools include the hardware, software and operating system

monitoring kernel driver, devmon and the resource discovery tool called ResFS.

Devmon is a grid-oriented hardware monitor which integrates data collected from

various performance counters into a unified view of a system’s current status. The devices

monitored include hardware performance counters, temperature and fan sensors, operating

system profiling variables and, if available, individual job performance measurements. The

information provided by several devmon monitors running on several machines can be

combined to provide a global view of the grid’s status.

ResFS, on the other hand, is a distributed resource discovery file system for 9grid.

ResFS is a hierarchical file system built on top of the 9p protocol which runs on the “Plan

9 from Bell Labs” operating system. ResFS presents a directory structure of file names

corresponding to nodes on 9grid and resources available for those nodes. The architecture

of ResFS is multi-tiered. Nodes on the grid announce themselves with one or more registry

services, which act as aggregates of information about a subset or a complete set of nodes

and resources on them that are available at any one time.

iii

The thesis also discusses collaboration tools and cross-administrative authentication

mechanisms for 9grid which are currently in development.

iv

Acknowledgments

I would like to thank my supervisor, Rob Simmonds, for his endless enthusiasm. His

fascination with distributed systems and computing has been contagious. Thanks to

Ron Minnich for his support and encouragement to “think outside the box” and for

showing me that the beauty of computer science lies in simplicity. Thanks to Brian Unger

for bringing together some of the brightest young minds and for creating a thoroughly

enjoyable research environment in the Grid Research Centre at the University of Calgary.

Thanks to Nayden Markatchev, Mark Fox, Phil Rizk, Roger Curry and the rest of the

Grid Research Centre group for the wonderful lunch-time discussions which not only put

my work into perspective but, through the unselfish sharing of ideas so characteristic of

this group, managed to keep me focused on what’s important. Thanks to the Bell Labs

Systems Research team for creating a wonderful operating system which made the task

of writing distributed software seem almost trivial, and also for enduring my ceaseless

questions. My parents and family deserve a special acknowledgment for infusing me with

the hunger for knowledge and the desire to better the world through science. Lastly and

most importantly, for standing by me through the two most important years of my life,

and for her unconditional love, my wife, Petya.

v

Table of Contents

Approval Sheet ii

Abstract iii

Acknowledgments v

Table of Contents vi

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Terminology . 2
1.2 Motivation . 4
1.3 Historical Survey . 5
1.4 Outline of Contributions . 10
1.5 Thesis Overview . 12
1.6 Summary . 14

2 Plan 9: a Grid Operating System 15
2.1 Plan 9 – the OS . 16

2.1.1 Historical Perspective . 17
2.1.2 Distributed Features . 18

2.2 Private Namespaces . 19
2.3 The 9P protocol . 20
2.4 Security . 21

2.4.1 Use of Private Namespaces . 22

vi

2.4.2 Virtualization . 23
2.5 Authentication . 24
2.6 Additional Provisions for Grids . 26

2.6.1 Authentication in a Grid Environment 27
2.6.2 ChatFS: A Groupware Communication Service 28
2.6.3 Other Considerations . 28

2.7 Summary . 29

3 System Monitoring 31
3.1 System monitoring in Grid Computing 33
3.2 Design and Features of Devmon . 34

3.2.1 Data Format . 35
3.2.2 Connecting to Devmon . 36
3.2.3 Accessing Devmon . 37
3.2.4 Controlling Devmon . 40
3.2.5 Implementation . 41
3.2.6 Data Exchange Example . 42

3.3 Hardware monitoring . 43
3.4 OS monitoring . 46
3.5 Performance of Devmon . 48
3.6 Devmon and Other System Monitoring Tools 49
3.7 Future Devmon Development . 50
3.8 Summary . 53

4 Resource Discovery 56
4.1 Standard Resource Discovery in Plan 9 59
4.2 ResFS . 64
4.3 Requirements . 66
4.4 Features . 70

4.4.1 Leaf Nodes . 70
4.4.2 Aggregate Nodes . 73

4.5 Design . 75
4.5.1 Leaf nodes . 76
4.5.2 Functionality . 78
4.5.3 Aggregate Nodes . 80

4.6 Performance . 81
4.7 Summary . 85

5 Summary and Future Work 86
5.1 Summary . 87
5.2 The future of 9grid . 88
5.3 Future Work . 90

vii

Appendices 93

A Source Code Listings 93
A.1 devmon -- hardware and OS monitoring tool 94

A.1.1 devmon.c – Kernel Device Driver Source 94
A.2 ResFS -- Resource Discovery . 99

A.2.1 resfs-th.h – header file . 99
A.2.2 common.c – Common Operations 102
A.2.3 policy.c – Policy Implementation 109
A.2.4 resfs-th.c – Main Threaded Code 110
A.2.5 stats-th.c – Statistics and Monitoring 116

A.3 AggrFS -- ResFS Aggregate Nodes 119
A.4 Mach – Per-processor Machine Definition 121

viii

List of Figures

3.1 Devmon monitoring a Plan 9 CPU server. The first row monitors sys-
tem load. The second and third rows monitor the CPU and motherboard
temperature sensors respectively. The fourth and fifth monitor CPU and
power fans. Note how the CPU temperature increases sharply with the
system’s load, and less sharply when the cpu fan is stopped. The scale on
the Y axis is [0,1000], except for the temperature scale, where it is [0,50] 46

3.2 Maximum number of queries for the two major types of devmon access . 49

4.1 Interaction between kernel device drivers and a user’s namespace. Arrows
correspond to mount calls issued by user programs. 61

4.2 Two users sharing a namespace through /srv. Both users mount the #s

device driver. User A exports the /exp directory as a.srv. User B mounts

a.srv in their own namespace. 62
4.3 A sample resfs structure in 9grid. A, B and X are administrative domains.

A’ and B’ are alternative registries, local to their respective domains.
GridCtrl is the main grid controller. 65

4.4 An example of resfs running on a small system of three nodes. B and C
are leaf nodes who have registered with A. A is also running its own leaf
node server. 74

4.5 resfs thread representation: updatethr handles the update of the com-
puter representation data structure, 9pthr reads and responds to 9P mes-
sages using a Tree * structure, netthr listens on port 18000 and accepts
requests from network clients. 79

4.6 Maximum number of queries per second performed to a local resfs server,
versus update interval for the update thread in microseconds. 82

4.7 Testing resfs from userland . 82
4.8 Maximum number of queries per second performed to a local resfs server,

versus update interval for the update thread in microseconds using seek(). 83

ix

4.9 Test program for evaluating synthetic file system performance 84

x

List of Tables

2.1 Message types in the 9P protocol . 30

3.1 Data, description and data type format for mondata 39
3.2 Functions in the implementation of devmon 54
3.3 Important registers for the Winbond W83627THF hardware monitor . . . 55

4.1 Queries per second for various types of resource access. 84

xi

Beauty is more important in computing than anywhere else in technology

because software is so complicated.

Beauty is the ultimate defense against complexity.

– David Gelernter

(in Machine Beauty: Elegance and the Heart of Technology)

xii

Chapter 1

Introduction

1

CHAPTER 1. INTRODUCTION 2

This thesis describes the design and development of tools that support grid computing

using the Plan 9 from Bell-Labs operating system. The software tools described in this

thesis provide hardware monitoring, resource discovery and authentication for the testbed

distributed environment, 9grid. The goal of this thesis is to provide software which allows

networked systems to be more easily integrated into a distributed environment comprised

of a geographically widely distributed set of users.

This chapter introduces the concepts of distributed computing and grid computing.

Section 1.1 describes some of the more commonly used terminology related to grids,

distributed systems and meta-computing software. Section 1.2 discusses the motivation

for this research, listing the major goals that I have tried to accomplish and justifies the

use of the tools that I have chosen. Section 1.3 gives a historical perspective of the

evolution of distributed and grid computing. Section 1.4 details the contributions that

my work offers towards creating a usable and elegant environment which integrates widely

separated computing resources. Finally, section 1.5 presents an overview of the rest of

the thesis’ chapters.

1.1 Terminology

Connecting computers to work together on the same problem has long been adopted as a

way to avoid, or share, the cost of expensive supercomputers. In fact, high performance

computers comprised of many single- or dual-cpu nodes connected via fast networks occupy

a significant share of the world’s top five hundred fastest computers list [46]. All of the

top ten machines currently (November 2004) are comprised of less powerful server- and

workstation-class nodes linked together by fast networks.

The term “distributed computing” is commonly used to describe any sort of operation

that involves two or more computers connected by networks. Distributed computing was a

hot topic in computer science research a decade ago, however a general solution that was

able to encompass all aspects of the possible arrangements of computers and networks in

CHAPTER 1. INTRODUCTION 3

a distributed environment was not found and the field split into several distinct subsets,

each named differently and having a distinct function, as described below.

Cluster computing involves a set of nearly identical nodes in close proximity, connected

via gigabit or fiber-optical networks; such installation of identical hardware located in the

same physical space is commonly referred to as a cluster [2]. Clusters can be built out of

specialized hardware, or using readily available off-the-shelf components. Since the only

hardware support for distributed computation in clusters is the network connecting the

nodes, all of the application-level parallelism in such environments is achieved via software

middleware such as:

� Message Passing Interface (MPI) – programming model

� Parallel Virtual Machine (PVM) – programming, execution and debugging model

� Distributed File Systems – storage

Commodity-off-the-shelf (COTS) cluster computing evolved in the early nineteen nineties.

With projects such as “Beowulf” at NASA [1] in 1994 cluster computing has matured

to be one of the major players in the high performance computing field. The current

generation of cluster software provides high performance at low cost, propelling clusters

to the top of the list of most powerful computers in the world.

Meta-computing gained popularity as an expression describing computers connected

and controlled by software to perform distinct functions. Enterprise-level meta-computing

software is responsible for connecting resource pools such as databases, storage and web

servers and employee workstations with a corporation’ data center. Essentially meta-

computing provides an environment in which applications are not tied to the underlying

hardware they execute their code on. Meta-computing emphasized systems tailored to-

wards solving the problems of a single organization. It relies on centralized control and

strict policy enforcement with the core of the system usually inaccessible by its user, who

is only allowed access to parts of the system based on the functionality or data he or

she needs. An example of such configuration is any university accounting system. The

CHAPTER 1. INTRODUCTION 4

hardware involved in meta-computing usually includes large, enterprise-level multiproces-

sor machines, mainframes and storage servers federating the bulk of the workload and

number-crunching powers into a data center.

Grid computing bridges the gap between meta-computing and clusters by describing

a computational model in which jobs access a collective pool of resources from com-

puters which may be physically separated and spanning across administrative domain

boundaries [4]. A relatively new field in Computer Science, grid computing involves the

utilization of widely distributed resources toward the goal of solving complex problems

requiring sharing and federating resources between research organizations. Thus, the next

evolutionary step of High Performance Computing will most likely involve a departure from

the single all-encompassing supercomputer towards multitudes of, most likely small, het-

erogeneous grids of computers, connecting together the computational powers of today’s

clusters with other scientific resources [1][2].

1.2 Motivation

There is a trend towards building large pools of computational resources by linking to-

gether the resources of different organizations into a collective resource, shared among the

participating entities. Clusters, (and recently grids) emerge as economical alternative to

the single supercomputer model of computation, but they also bring a social and cultural

change by connecting together people belonging to different institutions but working on

the same problem in virtual organizations [4].

The work described in this thesis explores a new approach to designing distributed

systems by observing that the easiest way to connect physically separated resources is to

provide a common element, a sufficiently simple glue protocol to connect them. This thesis

describes a set of middleware programs which seamlessly connect resources and services

separated not only by physical distances, but also by administrative and organizational

barriers. 9grid, the testbed grid environment which the tools described here are used

CHAPTER 1. INTRODUCTION 5

in, extends an existing distributed operating system, Plan 9, which has a proven track

record in connecting software and hardware into a seamless environment, adding to it the

most important features of grid computing: resource discovery, system monitoring and

cross-administrative authentication mechanisms.

The motivation behind this research can be summarized in one word: simplicity. The

goal is to create an environment in which the following are true:

� applications require minimal modification in order to be grid-enabled,

� creating a new distributed application from scratch is not complicated,

� the entry barrier is lowered significantly by allowing the end user to make the decision

whether to join and share resources with others,

� the cost of setting up the environment is small,

� there is very little user-perceived paradigm shift, i.e., users are not required to adapt

to a totally new and unfamiliar environment.

Essentially this means that the grids built with this system are supposed to be cheap,

easy to use and easy to program for. The interest with which the Plan 9 community has

adopted 9grid and the eagerness others have expressed in joining resources in utilizing the

environment are a testament to its contribution in the field. Currently there are 9grid

nodes in five different countries spanning three continents.

1.3 Historical Survey

The evolution of distributed computing can be traced back about 50 years and runs in

parallel with the evolution of High Performance Computing (HPC) [2]. HPC started when

the first general purpose machines were built to aid the war effort during World War II.

Historically the fastest computers in the world have always fallen into two categories,

supercomputers and clusters of scalar uni- and multiprocessors. In both types there exists

CHAPTER 1. INTRODUCTION 6

a strong reliance in parallelism to achieve the goal of very fast computation. Since all

computers have a practical peak performance, to go beyond that they need to be either

upgraded with faster components and additional units, or to be clustered. The common

denominator in all cases is the increase of the ability of the hardware to execute more

instructions per unit of time.

In the 60’s, Seymour Cray, introduced parallel instruction execution and pipelined

function units, which allowed the creation of the first vector supercomputer, the Cray 1,

in 1975. Several other companies soon followed in offering “vector supers”: IBM, Fujitsu,

Hitachi, NEC. Some of them are still in the market, building vector machines including

the currently second fastest computer in the world, the “Earth Simulator”, a collection

(or a cluster) of vector processor units built by NEC in Japan. At the same time other

companies designed and built cheaper and slower offerings nicknamed “mini-supers” [2],

which appealed to universities and organizations with smaller budgets. Companies who

offered “mini-supers” at that time included Alliant, Ardent and Convex.

CMOS-based microcomputers started appearing in the seventies. They brought in a

trend towards moving away from large, centralized time-shared computers towards smaller,

personal computers albeit at a general loss of performance. The CMOS architecture

suffered from an inherent lack of parallelism – while vector processors were able to work

on several chunks of data at the same time, CMOS-based microcomputers operated

sequentially. Since they were much cheaper, they became the preferred building block in

the movement towards personal workstations. Workstations allowed people to circumvent

oversubscribed timesharing machines and have a computer dedicated only to them, even

if that came at a net loss in performance. Workstations also caused a move towards a

single-user emphasis on operating systems which themselves were created as timesharing

environments.

The proliferation of relatively fast networks following the successful ARPANET project

signified the importance of connecting those single-user computers together. Furthermore,

workstation-based environments created many issues for system administrators ranging

CHAPTER 1. INTRODUCTION 7

from common security and user authentication problems to software update and licensing

on thousands of workstations. As Pike writes in [7], Chapter 1: “The early focus on

having private machines made it difficult for networks of machines to serve as seamlessly

as the old monolithic timesharing systems. Timesharing centralized the management and

amortization of costs and resources; personal computing fractured, democratized, and

ultimately amplified administrative problems. The choice of an old timesharing operating

system to run those personal machines made it difficult to bind things together smoothly”.

These problems with Operating Systems of the time soon brought many efforts to

create environments which utilized networks to the fullest extent. The first universally

acknowledged distributed software operating system is the RSEXEC Network OS for the

ARPANET, built in the early 70’s [45]. AEGIS, AMOEBA, Choices and DUNIX [41] are all

examples of distributed operating systems created in the heyday of distributed computing

in the late eighties and early nineties. Many old-style timesharing operating systems offered

distributed computation support in one form or another as a part of the installation, such

as the r -commands in UNIX for example. The “Plan 9 from Bell Labs” operating system

also emerged at the same time. It was the result of the work of researchers from the group

that created UNIX at Bell Laboratories, who were addressing the system administration

and interoperability issues of running an OS designed for single timesharing computers in

a networked environment.

The further proliferation of networks and workstations forced vendors to develop in-

teroperability tools for network computing. Where before it was sufficient to provide

interoperability solutions only between workstations and the central processing mainframe

or the data centre, now it is necessary to be able to communicate with any number of

diverse systems. The solution adopted by most developers is to create a middleware in-

teroperability layer which offers an identical view of a computer’s services regardless of

the underlying operating system.

In the late 90’s people became aware that the next evolutionary step in scientific com-

puting must not be in the form of faster hardware, but will come as a unified mechanism

CHAPTER 1. INTRODUCTION 8

for accessing resources across the organizational boundaries. The official birth of grid

computing is considered to be the publication of “The Anatomy of the Grid” in 1998 [4].

It defined the major building blocks of computational grids to support the emergent virtual

organizations. Virtual organizations are collaborative teams which do not need to belong

to the same organization, but work together on the same project and thus need to share

resources.

Currently grid computing middleware offerings exist from both academia and com-

mercial entities, though most of them are not really geared towards providing pervasive

access to data and computation. For example Sun’s “GridEngine” and Oracle’s “10g”

database are enterprise-level solutions for data and compute centers. Avaki’s Legion Grid

Portal [17] is perhaps the only “true” commercial grid offering, aiming to provide an envi-

ronment for federating data, computation and authentication resources. It is designed as

a portal, providing easy-to-use interfaces and uses standard, off-the-shelf software in con-

junction with specially developed command-line tools. The major drawbacks of Legion,

are interoperability and the reliance on a non-standard (new) set of tools and commands.

Academic research into grid computing combines open source designs, accessibility and

interoperability are the preferred building blocks among university research groups. There

are ongoing standardization efforts based primarily on open source, academic solutions.

The Globus toolkit [26] was created in the late 1990s as part of a joint research

project between Argonne National Laboratory and the Information Sciences Institute at

the University of Southern California. The team of scientists built upon NEXUS[21] in the

mid 90’s to create a toolkit for securely connecting resources across networks. Nexus[20]

is a communication library which supports a wide range of process creation mechanisms

in clusters and in its security-enhanced version [19], across the Internet. Out of their

research came the Globus Toolkit [15]. Globus provides middleware support for legacy

systems thus allowing grids to take advantage of the huge base of applications software

that those legacy systems support.

The aim of Globus is to provide a solution to the computational needs of large virtual

CHAPTER 1. INTRODUCTION 9

organizations that span multiple institutional and administrative domains [4]. Globus is

a middleware toolkit that provides fundamental distributed computing services such as

authentication, job starting and resource discovery.

While there are other Grid computing toolkits available, Globus currently provides a de

facto standard due to its development being closely tied to the formulation of the Open

Grid Services Architecture (OGSA) standard [3]. Once OGSA and other standards being

developed by the Global Grid Forum (GGF) are finalized, it is likely that commercial toolkits

that adopt these standards, and therefore can inter-operate with Globus environments,

will become more popular.

Globus provides a collection of services [5] including: Grid Security Infrastructure (GSI)

which provides authentication based on a Certificate Authority trust model [14][25]; Grid

Resource Allocation Manager (GRAM), which handles job starting or submission; exten-

sions to the FTP standard to provide GSI authentication and high performance transfer

(GridFTP) [16]; Monitoring and Discovery Service (MDS) enabling remote resource dis-

covery.

By itself, Globus does not provide all of the tools and services required to implement

a full featured distributed computing environment. Additional tools are available to fill

some of the gaps. The National Center for Supercomputing Applications (NCSA) provides

a patch to add GSI authentication to OpenSSH. This allows Globus environments to

have terminal based single-sign-on. Globus does not provide any scheduling functionality,

but rather relies on the client operating system scheduler or batch schedulers such as

OpenPBS [29] to handle local scheduling activities. Global scheduling between Globus

processes can be provided by meta-schedulers, such as Condor-G [30]. Condor-G submits

jobs to the GRAM service running on Globus nodes and GRAM handles the task of

submitting the job to the local scheduling system.

Many grid projects are already successfully operating across the world using the Globus

toolkit. These projects include WestGRID [42], TeraGRID [43] and RealityGRID [44].

The problems which people experience with those toolkits come primarily from the

CHAPTER 1. INTRODUCTION 10

fact that the underlying operating systems lack support for distributed computing. Most

toolkits implement the basic connection mechanism themselves, often resulting in incom-

patible or, alternatively, tightly coupled, technologies and the consequent software bloat.

For example, the Globus Toolkit v3.2 consumes, in archived form, twice the space of the

entire Plan 9 operating system. The existing middleware toolkits have a set of admin-

istrative requirements which need to be satisfied before even the very modest demands

application is to be executed, which is a problem when it comes to writing new code

or modifying an existing one. The expression “grid-enabling an application” is used to

describe the process of rewriting an application to work with a particular grid toolkit. In-

frastructure, installation and maintenance are hindered by the reliance on custom-patched

libraries and lack of documentation.

Even though major standardization efforts are ongoing, few standards exist, and in

the cases where there are standards they are either not enforced or continuously evolv-

ing [54][56][57]. Furthermore, there is an observed trend for users to avoid the tools

provided by the middleware toolkits and instead use ones that they are more familiar with

from their day-to-day computer use. For example, file transfer statistics on WestGrid’s

networks (WestGrid is a grid computing network spanning across several western Canadian

universities [42]) indicates that the majority of file transfer traffic goes through SCP, the

SSH-based encrypted file copy program, instead of the GridFTP program provided by the

Globus Toolkit. Naturally this percentage will change once people familiarize themselves

with Globus’ tools but it is nonetheless indicative of reluctance among users to adopt

new technology, even when the potential benefits outweigh the drawbacks incurred from

climbing the learning curve.

1.4 Outline of Contributions

The set of tools described in this thesis are a part of a project to connect many of the

Plan 9 researchers, organizations and enthusiasts into a collaborating environment where

CHAPTER 1. INTRODUCTION 11

they can share computational and other resources. The environment is called 9grid [59]

and currently involves researchers from the University of Calgary, Los Alamos National

Laboratory, Bell Labs, Monash University and countries such as Finland, the Netherlands,

Russia, Bulgaria, Japan, the UK and the US. The software support for 9grid I describe

here is the first step in building the environment.

I attempt to solve some of the problems which plague middleware toolkits through

integrating a small set of tools onto an already existing framework for distributed compu-

tation. 9grid, the research grid built using these tools, is substantially more lightweight,

modular and portable across hardware platforms. With the new set of Plan 9 support

libraries for UNIX [58] it is even portable across operating systems.

With the relative obscurity that the Plan 9 operating system has in a research envi-

ronment currently dominated by Linux, there is little chance that many users will start

using and building distributed environments based on Plan 9 grids. There is a possibility

however, and some people already warn of this, that Linux and other UNIX clones have

reached a critical mass in which the sheer size of their code base stifles non-incremental

and innovative research. If this happens I expect an influx of researchers looking for sim-

pler, more elegant systems that don’t carry as much baggage left by legacy software. One

of those systems may be Plan 9.

There already is a push by a few people in several universities and research labs for

work on alternative operating systems, including highly decoupled service-based systems

for embedded devices [34]. If such research gathers momentum this thesis will increase in

value.

The contributions of this thesis include a comprehensive description of the application

of Plan 9 from Bell-Labs and the tools it provides in the context of grid computing. It

offers a distinct look into alternative solutions for distributed computation by breaking

the mold of legacy software and building on top of systems which have been designed to

accommodate new paradigms such as single-protocol communication, virtualization and

a generalized approach to resource sharing.

CHAPTER 1. INTRODUCTION 12

This thesis also describes a model of integration which creates a distributed environ-

ment based on a single, well-defined protocol with which all parts of the system communi-

cate, as opposed to the model of building decoupled service/client models in which every

service defines its own communication protocol. Simplifying distributed environments is

also a topic this thesis is concerned with. Tools on which we depend for our daily work

are made available in a new, distributed context without modification or change in their

appearance; the programming model attracts with its simplicity. My goal is to create an

environment where connecting components is easy, an environment where resources share

data across networks as seamlessly as they do it across pipes. This view of grids as a

workflow management system akin to the pipes in UNIX is described in greater detail in

Section 5.3.

Last, but not least, I hope the work in this thesis contributes to the community a

set of tools which are general enough to be useful in daily system operations or even in

environment which can not be described as grids.

1.5 Thesis Overview

This thesis is organized as follows:

Chapter 1 (this chapter) introduces the subject of grid computing, outlining the goals

of this research, its historical perspective, motivation and contribution to the field

of Computer Science.

Chapter 2 discusses the operating system which serves as the base for 9grid. It explains

its basic features as they pertain to grid computing, such as:

� Private Name spaces – an OS paradigm aiding job and service virtualization,

� The 9P protocol – the language spoken between all services on 9grid.

� The security mechanisms ensuring secrecy of communication,

� The authentication mechanisms regulating access control.

CHAPTER 1. INTRODUCTION 13

Chapter 3 deals with the tools developed for this research allowing us to monitor the

hardware status of a machine on the grid. It details a kernel devices called a monitor,

or mon for short and the statistics it gathers from temperature sensors, fans on the

motherboard and kernel profiling variables which may be used in failure prediction

or in making resource scheduling decisions.

The devmon kernel driver also serves as an example of the simplicity with which grid

services can be created using the distributed tools of the Plan 9 operating system.

Despite the fact that it is a kernel device, devmon can also be used as a grid service

by remote clients.

Chapter 4 describes a resource discovery file system developed for 9grid named ResFS.

ResFS is a multi-tiered application which gives a single point of access to the

resources available on 9grid. It is divided two parts: resource gathering at the local

level (node) and resource gathering for a group of nodes.

The single node presents a directory named after itself, containing files corresponding

to various parts of the system, which provide information about the current status of

that subsystem when queried. The global view is a directory hierarchy of mounted

single node directories.

Chapter 5 summarizes the work performed in the thesis and lays out some of the future

directions this research may take. The future directions for this research are:

event-driven system monitoring – a much more scalable model for information

gathering which could be used in large scale HPC, in clusters and large grids

interconnected by fast networks

workflow scheduler – a resource management system which transports data across

grid services and components much the same way UNIX pipes do between pro-

grams on a single machine

CHAPTER 1. INTRODUCTION 14

distributed /proc – a single control point for processes and jobs running on sep-

arate nodes on the grid or a cluster

distributed authentication – a decentralized authentication mechanism for grids

data caching – a mechanism to allow the job to choose which data caching/compression

method is used for its communication

The remaining part of the thesis includes appendices containing source code for the pro-

grams developed.

1.6 Summary

This chapter gave an introduction to this thesis and the topics of grid computing it covers.

It started by describing the common terminology used currently in the field of distributed

computing such as grids, meta-computing, virtual organizations, clusters, and others.

Next it discussed the major motivation behind this work, which is to create a simple and

easy to use environment in which people and computers distributed across the globe can

share and federate data, computational and other resources.

This chapter also gave a historical survey of the field of distributed computing, starting

with its predecessors, the massively parallel supercomputers of the past, covering mini-

computers and networks connecting them, the distributed operating systems that used

them and the middleware toolkits spawned by the fact that legacy systems such as UNIX

needed to be accommodated in networked environments. On the software side of things

this chapter looked at other solutions that allow resource sharing on large scale, commer-

cial meta-computing offerings as well as the currently preferred tool for academic research

in distributed computing – the Globus Toolkit. This chapter also gave an outline of con-

tributions, which listed how the grid environment built as part of this research, 9grid, will

benefit from this work and how it may benefit the field in the future. An overview of the

rest of the thesis was also provided.

Chapter 2

Plan 9: a Grid Operating System

15

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 16

This chapter introduces the Plan 9 from Bell-Labs operating system. Plan 9 is the

development platform for all tools written as part of this thesis.1 Section 2.1 gives a his-

torical perspective of the design of the OS as it relates to the research trends in computer

science at the time and also describes its design. Section 2.2 introduces the concept

of private namespaces and how they benefit distributed and grid computing. Section

2.3 describes the basic building block of all Plan 9 installations, the 9P communication

protocol. Section 2.4 discusses data encryption, virtualization and private namespaces

as tools for enhancing security in grids, while section 2.5 discusses the requirements for

authenticating across multiple domains on the grid. Section 2.6 describes some additions

to the Plan 9 operating system which help its adoption in grid computing, including a

new authentication mechanism currently being developed in collaboration with Bell Labs

and Los Alamos National Laboratory, which allows processes and jobs to cross adminis-

trative domains painlessly. It also describes ChatFS, a real-time communication service

I have programmed for 9grid which, although not essential to grid computing, aids the

communication between 9grid’s administrators and users.

2.1 Plan 9 – the OS

Plan 9 from Bell-Labs [7] is a distributed operating system created in the late eighties;

the first Plan 9 distribution was released in 1991. Plan 9 was created as an attempt to

address fundamental issues with UNIX’s design, arising from the fact that it was originally

conceived in an environment lacking many components which we take for granted today,

such as networking or graphical display terminals. Both networking and graphics were

added later on in the life of UNIX, and every new layer accommodating a new type of

hardware or usage paradigm has created more complexity due to the large amounts of code

associated with it, and the constantly changing interface requirements. Plan 9 presents

1Plan 9 source code listed in this thesis is released under the Lucent Open Source license,

http://plan9.bell-labs.com/plan9dist/license.

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 17

an environment free of legacy designs, where tools and services are built to address the

best way of solving a problem, instead of concern for interoperability with legacy systems.

2.1.1 Historical Perspective

Several other distributed operating systems were created in the heyday of distributed

systems research. Examples of such systems are Sprite [31] and Amoeba [32]. These

systems built completely self-sustained environments by departing significantly from the

UNIX model prevalent at the time. In Amoeba for example, communication with external

services was difficult or even impossible, in most cases necessitating a rewrite of the

communication code for the new system. The lack of developers, the very small range

of supported hardware and the small user base, even compared to Plan 9, have also

significantly slowed the adoption of those systems outside of their research communities.

In retrospect, Plan 9 was the only research distributed OS from the late eighties and early

nineties which managed to attract developers and be used in commercial projects long

enough to warrant its survival to this day. In Plan 9 the ANSI-Posix environment [6]

solves the portability problem and most non-graphical UNIX applications can easily be

compiled for Plan 9. In most cases rewriting an application to run natively on Plan

9 involves removing large portions of code dealing with inconsistencies between UNIX

variants, which simply do not exist in Plan 9.

As issues in UNIX were addressed in Plan 9’s design, the system was also extended

beyond the timesharing mainframe and personal workstation environment to accommo-

date networks and the fast growing cheap commodity hardware market. The early trend

of the 1990’s was to switch away from the organizational mainframe and into cheaper

workstation-based computing, thus Plan 9 was designed to create a distributed environ-

ment comprised of cheap computers as terminals and fast, expensive servers as storage

and CPU cycle providers [7].

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 18

2.1.2 Distributed Features

What separates Plan 9 from other distributed systems is the ease with which design con-

siderations for new computing models were accommodated together with widely adopted

and accepted UNIX paradigms. For example resources in Plan 9, be it disk storage,

devices, graphical, network and other subsystems, are represented as files and directo-

ries containing files, all comprising a hierarchical structure called a namespace bound

together with a simple communication protocol, 9P. A uniform access protocol means

that in contrast to Linux, which has almost 300 system calls to manage many different

types of resources, Plan 9 has 40 system calls and a uniform method for enumerating and

controlling resources.

Resource control is accomplished via a simple and consistent interface. Each device

or file system presents at least two files for process interaction, one for control messages

and one for data, usually called ctl and data. Control operations on the device are

performed by writing plain text messages to the control file, status is obtained by reading

from the same file. Any data that needs to be transferred to the device is written to the

data file, any data that needs to be transferred from the device is read from the data file.

This interface extends to all resources in the system and is universally adopted throughout

the environment. It also works transparently over a network, as do all Plan 9 operations.

For example a resource or a device such as network interface on a remote computer, can

be imported and controlled as though it was local. Resources are functionally equivalent

regardless of their location on the network or in a grid such as 9grid.

Plan 9 separates hardware resources on the local network based on the role they take

in the environment. For example it separates CPU (handling the computation), terminal

(providing interface to communicate with the user) and storage servers into networked

components so that they can run on different hardware, preferably one that is optimized

for the task it performs. For example it is common for Plan 9 networks to be built

around multiprocessor servers as CPU nodes and have storage on servers connected to

large disks via a RAID controller, with slow, but cheap computers connected to large

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 19

displays as terminals. This greatly reduces the cost of hardware and maintenance since it

concentrates expensive equipment in the server room, while users may run on inexpensive

terminals comprised of just a display, mouse and keyboard.

A typical Plan 9 configuration consists of diskless workstations, Personal Digital As-

sistants (PDA), CPU servers and file servers, interconnected by wired and wireless Ether-

net [7]. To the casual user the entire installation appears as a single, centralized system.

Plan 9 allows users to configure their computers to run interactive programs locally and

compute-intensive ones on one of the more powerful CPU servers. The protocols used to

access file servers are security hardened to the extent that servers need not hide behind

firewalls. The main Plan 9 file server at Bell Labs, for example, is outside the Bell Labs

firewall.

Benefits of this design include the fact that it extends over the networks via rpc-like

programs which serve as mount devices transmitting the 9P protocol messages to and

from clients and the servers hosting the resources they access. The 9P protocol that

connects applications to file systems was designed to run over networks as well as pipes

or any other connections providing ordered packet delivery. As a result, it is quite simple

to set up a diskless workstation with 9P connections to remote file systems.

2.2 Private Namespaces

The different services provided by the Plan 9 operating system are joined together as

needed in a single namespace, private to the process which created it [13]. A Plan 9

process can pass its namespace on to its children unmodified, and even export it for

descendants running on other nodes.

Just like in UNIX, the namespace of a Plan 9 process is composed of the trees of all

the different file systems mounted by the kernel that is running the process. Unlike UNIX,

however, which maintains only a single namespace per machine, Plan 9 can maintain

a large number of namespaces which are either individual to a process or are shared

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 20

by its parents and descendants. The mount operation in Plan 9 takes a file descriptor

representing a connection to a file system and attaches it to an arbitrary point of the

process’ namespace. All operations on files within the hierarchy served by the file descriptor

are conducted through an encrypted communication channel to the mounted file server.

Plan 9 also allows file systems to be mounted at the same point, thus creating the

so called union mount. Ordering of lookup results in union directories is determined by

controls in the mount driver – one may choose to mount a system before, or in front

of any other systems currently mounted, after, in which case it will be the last result

returned, or instead, in which case a traditional mount operation is carried out. The

paper “Programming Distributed Applications using Plan 9 from Bell-Labs” [9] contains

an example of file servers and namespaces used currently in Plan 9’s process control and

windowing system.

The namespace that a process sees is the result of a sequence of mount and bind

operations. By repeating this sequence on another host with a little interpretation, the

same namespace can be constructed there. This is done when a user starts a shell on the

CPU server giving the user the same environment on the CPU server as on the terminal.

The terminal’s operating system actually exports its file systems to the user on the CPU

server so that programs running on the CPU server continue to have access to devices

on the terminal. Starting a graphical application on a remote server displays on the local

terminal seamlessly as it writes all graphical operations to the same files in /dev/draw

imported on the remote machine when the connection is initialized.

2.3 The 9P protocol

The 9P protocol provides the glue between Plan 9 processes and Plan 9 servers [40]. A

session between a server and its clients consists of requests by the clients to navigate the

server’s hierarchy and responses from the server to those requests. The client’s requests

are called T-messages, the server responses are called R-messages. A 9P transaction is

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 21

the combined act of transmitting a request of particular type by the client and receiving

a reply from the server.

Each 9P message contains a sequence of bytes representing the size of the message,

the type, the tag (transaction id), control fields depending of the message type and a

UTF-8 encoded payload. Most T-messages contain a a 32-bit unsigned integer called fid,

used by the client to identify the “current file” on the server, i.e. the last file accesses

by the client. Clients choose the tag for each message which is used in the server reply

and ensure that no two outstanding messages on the same connection have the same tag.

Multiple T-messages can be sent by the client out-of-order. The different 9P message

types [40] and their role in the communication are listed in Table 2.1.

The Plan 9 implementation of the 9P protocol is written in C, but there are no

restrictions placed on the choice of the programming language. Implementations of the

9P protocol have been written in Limbo (the language of the Inferno operating system)

Python, Haskell and most recently Java.

Plan 9 commands do not usually see the 9P protocol directly. Instead, their read(),

write(), open() and other calls are translated into 9P messages by the underlying mount

driver.

2.4 Security

In the context of grid computing, a secure environment is one that is able to protect the

communication between jobs on the system from third party observers, protect jobs from

adverse effects caused by other jobs’ actions, and protect jobs from resource starvation,

which can be caused by denial of service (DoS) attacks, or illegal resource utilization by

other users. Plan 9 does not rely on third party additions to handle communications with

hardware or between nodes. It has been designed to enforce a strict security policy to

which all programs must adhere [12].

Key elements of the security infrastructure in Plan 9 are the lack of superuser account

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 22

and encryption of all communication via a ticket-based protocol using authentication

mechanisms independent of the session or environment. The OS also provides encrypted

data storage as a service. Furthermore, in Plan 9 all processes operate in private names-

paces which hide a process’ communication channels from others. Private namespaces

were explained in Section 2.2.

The kernel delegates most of the security infrastructure considerations to the interpro-

cess communication drivers such as mount, bind and the protocol carrying all information

across the system, 9P. This means that cluster and grid jobs do not have to be concerned

with the underlying security infrastructure as long as they can ensure on their end that

their private keys are not compromised.

2.4.1 Use of Private Namespaces

The most important security feature Plan 9 brings to grid computing is the concept of

private namespaces, discussed in section 2.2. Private namespaces ensure that communica-

tion between processes or clients is restricted only to the parties involved and is invisible to

others. Each process on Plan 9 sees a private view of the underlying system comprised of

different resources’ file servers bound together in a tree-like hierarchy called a namespace.

The primary security feature of private namespaces is to restrict other clients from

snooping over private communication channels or even knowing that they exist. User-

level mounts of remote systems in a process’ namespace ensure that remote grid-enabled

resources can be brought in on demand and invisibly from third parties. It is even possible

to restrict the knowledge of which processes are currently running on a system by changing

the permissions of the process file server /proc.

In Plan 9 processes share their parent’s namespace by default unless an argument has

been given to fork() to create a copy of the namespace. Clients willing to share parts of

their namespace with other processes or users on the same system can do so by posting a

file descriptor pointing to the root of that namespace to a special directory, /srv, which

acts as a bulletin board for file descriptors. There is no restriction on what may be shared,

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 23

except the restrictions imposed by file permissions associated with the exported files. For

example, nobody will be able to access a resource exported without any read or write

permission bits set.

2.4.2 Virtualization

Grid environments are often considered insecure due to their highly distributed nature, the

fact that they involve different hardware and software platforms and the lack of a single

system administration authority.

Grid solutions, such as Globus, being a middleware platform and not a standalone

system, provide security features which deal primarily with proving a user’s identity and

encrypting the connection between hosts, not with protecting the general integrity of the

system [25]. One particular issue that needs to be addressed in grid middleware toolkits is

protecting jobs from a breach in the security of the underlying system. For example, a user

submitting Globus jobs to a cluster cannot be guaranteed that the computational result

isn’t compromised or erroneous, or that the intellectual property of the work is preserved.

Similarly, a computer connected to 9grid could have its kernel booted in debugging mode

or hacked to log data off-site, thus monitoring all communication with endpoints at this

computer unencrypted. There is no mechanism to restrict interaction between processes

on the same installation. Some distributed installations, especially in security-conscious

fields, impose the requirement that jobs running on the same cluster, though able to

perform high-bandwidth communications between each other, have that communication

protected from third party viewers.

A solution to this problem often employed in legacy systems are virtual environments,

tools that virtualize the hardware causing each program or group of programs to run on the

hardware alone. Such tools include VMWare [62] and Xen [61]. Using virtual environments

restricts communication with other processes and secures the system, but has performance

implications that are difficult to predict. There have been implementations of private

namespaces by means of virtualization of the host OS [27], whether through support for

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 24

private namespaces in the kernel [11], or through third-party solutions like VMWare, where

a client’s session on a particular node is started as a virtual machine containing resources

available only to the user.

Sand-boxing approaches, including an implementation of private namespaces for var-

ious operating systems on which Globus runs [11] have generally failed to yield a secure

system due to them being constrained to the particular node they run on, i.e. the privacy

is lost once other systems are involved. The fact that there is no standard implementation

of sand-boxes that would work in a heterogeneous environment also hinders their adoption

as a security solution.

2.5 Authentication

My work related to authentication mechanisms in a grid environment is concerned with

the ability of the environment management system to handle proving a user’s identity and

the deployment and storage of security information. This section presents the authenti-

cation mechanisms currently in use by Plan 9 and expands on possible ways of extending

accounts on the grid to carry information relevant to an environment spanning multiple

administrative domains.

Authentication in the Plan 9 distributed environment [12] is delegated outside of the

application and is performed by dedicated authentication, or auth servers. Authentication,

or “auth” servers on a Plan 9 network are physically secured machines that operate

independently from the rest of the installation. Access to auth servers is normally restricted

to the physical console of the machine.

The authentication agent in Plan 9 is called factotum. Factotum is the only program

in Plan 9 that understands authentication protocols, security keys and the mechanisms

for their deployment. This agent stores the authentication keys for the programs with

which it shares the environment and performs authentication both as a client and as a

server, being able to assume both sides of an identity proof dialog in the course of a single

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 25

session.

Factotum does not communicate with external programs directly, instead it is consulted

by local entities sharing its namespace whenever authentication information is needed.

After receiving a request for establishing a trust relationship, a client will act as a proxy,

relaying communication messages between the client’s and server’s factotums until a

mutual authentication is reached.

Factotum also serves a double-purpose as a single sign-on agent with its ability to

remember the currently active authentication tokens for the private namespace it serves.

Since factotum stores user-provided authentication information, such as VNC or SSH,

POP3 and IMAP passwords [12], instead of prompting the user on each authentication,

it simply uses the tokens it already holds, prompting only when they fail. Failure is

most likely to happen with one-time password schemes such as crypto cards or netkey. In

effect, this creates an environment where passwords are not prompted for more than once,

and once authenticated with, remote servers remember the job’s owner identity without

compromising the integrity of the underlying protocols.

Factotum protects the security of the account it serves by holding all security keys

in protected areas of main memory, making it invisible for other users on the system. It

also protects its running process’ image by disabling a kernel’s ability to swap it out to

secondary storage. Factotum is unable to keep state between restarts because all keys

are kept in volatile memory cleared before starting each new Plan 9 process. To initialize

it a user either supplies the passwords requested, or bootstraps factotum on start-up by

reading the keys from a general-purpose encrypted data storage called secstore [12], where

access is controlled by an authentication mechanism separate from the system.

The security protocols currently in use by Plan 9 include X.509 certificates, RSA keys

for use with SSH, the DES challenge-response protocol, and some plain-text password

schemes such as the ones used by Telnet, FTP, POP3, IMAP and VNC among others [12].

The proliferation of distributed and grid-like environments, each having multiple sites

and numerous authentication domains, requires a reevaluation of the currently used au-

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 26

thentication mechanisms. Normally authentication is based on a name and unique number

designating a particular user on the system, a scheme which often runs into problems even

in locally distributed environments due to the special care that needs to be taken to syn-

chronize the username/userid pairs between different systems. Plan 9 has avoided that

issue by not using a numerical user ID. However, the user name of a participant is not

sufficient to provide all necessary information about the user’s identity in a distributed en-

vironment any more. Administrators must deal with potential user name clashes between

grid sites early on in the environment’s design phase.

The scheme currently used by other systems, such as Globus, creates a global user

namespace, where all necessary user information is carried in their authentication informa-

tion. Local grid nodes then choose their own mapping from the global user ID to a local

user ID, of which there is a particular set and naming convention created beforehand to

be used by Globus patrons. For example jobs started by user andrey at a local terminal

run as user b102 at site B and user c374 at site C. The conversion between users is done

transparently by GridFTP [16] while copying the files. Note that in the Globus scheme,

all applications which might bump up against the global name/local name dichotomy

need to be modified to accommodate it, the current policy for WestGrid for example is

implemented using a global user name for all sites [35].

2.6 Additional Provisions for Grids

Grids require much more than simple resource monitoring, resource discovery and schedul-

ing mechanisms to be actively used and supported. Here I discuss two tools for Plan 9

which I have taken an active role in designing or implementing. One is a decentralized

cross-administrative authentication mechanism, the other is a groupware and communi-

cation service.

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 27

2.6.1 Authentication in a Grid Environment

I am currently taking an active role in investigating a new system for identifying users’

memberships in organizations and locations across 9grid without necessarily storing all user

information on all sites [34]. It involves designating users as members of authentication

domains, where membership is carried by the user’s identification name as it appears on

different grid systems. For example, a process owned by user andrey, member of the

ucalgary authentication and administrative domain running on a remote grid node will

appear there as user andrey@ucalgary and will be unable to access resources which a

member of the remote administrative domain with the same user name may have access

to.

Local authentication servers are able to request credentials from the master auth

servers for a member of a particular domain without having to store them locally. They

can also refuse authentication to untrusted members, even though their credentials with

the remote server may be valid. This is implemented by extending the authentication

server’s capabilities to include authentication via remote systems and auth servers not

handled by the immediate network being authenticated for via authentication proxies.

This authentication scheme aids grids by allowing users to keep their desired user

names across administrative domains, while avoiding clashes with local users’ processes

and providing administrators with an easy way of identifying where a particular process

originates from. The authentication server the user is assigned to in this case acts as a

global authentication agent for this user’s processes, authenticating their identity every-

where on the grid. It also simplifies administration by keeping all administration-related

tasks close to the originating site, instead of delegating them to a centralized administra-

tive entity.

This scheme is very similar to the REALMs implemented in Kerberos V4 and V5 [67].

The differences are mostly in the details: where the Plan 9 scheme described above re-

quires no additional tools and programs to operate and be administered, Kerberos requires

extra software to be installed on the system, such as ksu or kadmin, which are used for

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 28

administrative tasks. The configuration file for cross-realm authentication needs to exist

on all clients in all domains involved. There are no mechanisms for excluding domains from

cross-realm authentication, unless a new realm is created containing only those systems.

2.6.2 ChatFS: A Groupware Communication Service

A grid is useless if it doesn’t provide a way for its users to communicate with each other

and synchronize on their work, which is why I have developed a file-server-based chat

program called ChatFS.

Chatfs is a service which can either be used in a grid environment or in the context of

a single Plan 9 installation. It works by providing a file descriptor which, when mounted by

its clients, serves as the root of a directory in which several files corresponding to “rooms”

are located. Clients who wish to join a particular room cd to the directory and run a simple

two-way communication program that reads and writes to the file corresponding to the

room.

Chatfs takes care to announce each new client, by printing a short message indicating

the user name of the person who joined. It also ensures that each message written by its

clients is transmitted to everybody else in the room.

The differences between ChatFS and other networks providing similar services such

as Internet Relay Chat (IRC) [68] or Instant Messaging is that ChatFS is integrated with

9grid and does not require any specialized protocol or clients. Chatfs has been in use for

a few months on the University of Calgary’s Plan 9 installation with clients connecting

from all over the world.

2.6.3 Other Considerations

Other programs which I am taking an active role in designing, and which will become part

of the Plan 9 grid toolkit, include:

� distributed /proc file system – the ability to control processes executing on remote

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 29

systems

� meta scheduling – decision making about the location a program executes at based

on available and demanded resources and policy

� distributed data replication – a unified framework for managing data on the grid

� data transfer and caching – how to transfer data fast and how to cache data during

and after computations runs

Those additions are listed in detail in Chapter 5, Future Work.

2.7 Summary

This chapter introduced the Plan 9 from Bell Labs operating system and the distributed

computing features it provides. The chapter discussed the historical perspective of the

OS and how design decisions affected features such as security, authentication or remote

service access. It introduced the concept of private namespaces, perhaps the most impor-

tant feature of the OS, and gave examples of how private namespaces help in securing the

Plan 9 environment. The chapter also discussed the single sign-on authentication agent

factotum and the help it provides in generating a secure environment without the hassle

of supplying passwords at each step. The chapter also described 9P, the communication

protocol on which all Plan 9 services are based, both local and remote.

Finally, the chapter discussed some additions to the Plan 9 operating system to help

its adoption in grid computing, such as a new authentication mechanism that crosses

administrative domains, a groupware communication service called chatfs and several

other programs still in development which I have taken an active role in designing.

CHAPTER 2. PLAN 9: A GRID OPERATING SYSTEM 30

9P message type Description

version identifies the version of the protocol and in-

dicates the maximum message size the sys-

tem is prepared to handle

auth exchanges auth messages to establish an au-

thentication fid used by the attach message

error indicates that a request (T-message) failed

and specifies the reason for the failure

flush aborts all outstanding requests

attach initiates a connection to the server

walk causes the server to change the current file

associated with a fid

open opens a file

create creates a new file

read reads from a file

write writes to a file

clunk frees a fid that is no longer needed

remove deletes a file

stat retrieves information about a file

wstat modifies information about the file

Table 2.1: Message types in the 9P protocol

Chapter 3

System Monitoring

31

CHAPTER 3. SYSTEM MONITORING 32

Today’s Grids are an amalgam of resources distributed across networks. To gain

access to those resources and to be able to utilize them a grid client needs to know what

is available at any given point and where it is located on the network. It is a common case

for grid jobs to request a specific hardware type, system load, storage or network capacity.

The role of a grid system monitoring tool is to provide easy access to that information.

System monitoring makes available information regarding the state of a particular

computer, its operating system, jobs running on it and the network connections made

to or from it. System monitoring also includes information about hardware devices such

as storage drives, network interfaces or any secondary devices that may be present, such

as audio or USB devices. Some architectures, such as IBM’s POWER5, have specialized

performance counters which also play a role in performance monitoring. They provide

valuable information about how the system behaves under different workloads.

This chapter describes devmon, a Plan 9 kernel driver I have developed which presents

system monitoring information as a network-accessible file hierarchy. Devmon is used in

conjunction with other tools to aid monitoring, development and maintenance of the 9grid

research grid [59][52].

The chapter starts by describing the role of system monitoring in grid computing. It

gives justification for the need of a robust architecture providing an interface to a system

monitoring information for a widely distributed set of computers. The design and features

of devmon discussed in Section 3.2, include the data format, establishing connections to

devmon and accessing its information and control interface. Sections 3.3 and 3.4 describe

the hardware and OS monitoring features currently implemented in devmon. Section 3.5

presents performance measurements and evaluation of devmon, while 3.6 compares it to

other system monitoring tools. Section 3.7 talks about the future development planned

for devmon.

CHAPTER 3. SYSTEM MONITORING 33

3.1 System monitoring in Grid Computing

In the context of grid computing, system monitoring expands to include information about

all available computers and resources on the grid, a task much more difficult than that

of monitoring a single system. System monitoring coupled with resource discovery (dis-

cussed in Chapter 4) provide the information required to make decisions about sharing or

scheduling grid resources. In the short term system monitoring can help observe and eval-

uate critical conditions on the grid; in the long term it helps observe trends by providing

information which can be statistically analyzed.

For example, by knowing that a set of nodes is currently busy with a CPU-intensive

job a resource scheduling algorithm may decide to delay the submission of a new job or to

run it on different computers. Tests of the devmon monitoring software described in this

chapter show that with a Pentium IV processor with core frequency of 2.66 GHz running

computationally intensive jobs the mean time between a CPU fan failure and the core

temperature increasing above the manufacturer’s operational limit is 5 minutes. Ample

time, in most cases, to prevent a disaster.

In the long run that same scheduler may observe patterns in the system’s behaviour

under heavy load and decide to schedule batches of potentially long-running jobs dur-

ing off-peak times, such as nights and weekends. If system monitoring information is

additionally saved in a database for later retrieval and review, one is able to analyze it

statistically in order to discover correlations between usage patterns, which may help im-

prove performance of the computer in question, or for a particular type of jobs running on

it. Another example relevant to grids is to increase bandwidth between nodes whenever

a potentially large data transfer occurs. This type of system monitoring and scheduling

is used in some optical switches which are able to change packet routing policies on-the-

fly and utilize high-bandwidth interfaces whenever the network load increases beyond a

certain threshold [60].

System monitoring is also used in failure prediction for large HPC clusters [36], where

an abnormal reading of one of the sensors on a computer provides a warning about

CHAPTER 3. SYSTEM MONITORING 34

potential disruption in the workflow or a failure of the node as a whole. Thus, observing

that a CPU fan’s speed has reached 0 or is falling below a low watermark one can predict

an increase in the CPU core temperature and take evasive actions such as turning the

node off or turning the CPU off on architectures where that hardware feature is available.

Replacing a faulty fan on a CPU is much less expensive than replacing a motherboard

with a melted processor on it.

Currently, hardware monitoring in Plan 9 suffers from several issues that prevent it from

being fully utilized in an environment such as 9grid, which devmon is designed to solve.

One is the lack of centralization in reporting the system resources available, the other is

the lack of integration between system monitoring (devmon), network database services

providing query services for resources (ndb) and the networked environment spanning

multiples of computers from different Plan 9 installations. ResFS, described in chapter 4,

was created to solve that problem by binding those components together and providing

an easy access to information about resources on 9grid.

3.2 Design and Features of Devmon

The name devmon follows the standard Plan 9 naming conventions, combining the func-

tion of the device with the position it takes in the kernel. Dev is the common name for

device drivers and mon is borrowed from SuperMon.

The single-character Unicode kernel-name used to attach to the device when the first

connection is initiated is “∞”, a name chosen randomly from the non-ASCII subset of

the Unicode character set. The Unicode character set was invented by the creators of

Plan 9 from Bell-Labs and is used throughout the system [10].

As with any other Plan 9 kernel device, devmon presents its information and control

interface as files in a hierarchical directory [7]. Devmon serves a single-level directory,

currently containing four files:

monctl

mondata

CHAPTER 3. SYSTEM MONITORING 35

fans

temp

Two files function as control and data interface to devmon: monctl and mondata. De-

vmon also provides an interface to the on-board hardware monitoring chipset, fans and

temp, using a slightly different format conforming to the accepted one by the standard

visualization tool, stats. The change in format for the two files is discussed in sec-

tion 3.2.3.

By accessing the files via standard tools provided by the operating system and familiar

to most users such as cat, ls, grep and others, one can obtain information about the

operating system’s current status, the status of various hardware sensors or, on some

architectures, performance counters.

3.2.1 Data Format

The data format accepted and output by devmon is S-expressions. This format has been

chosen for two reasons: it is easy to read and simple to parse.

Symbolic expressions, or S-expressions [38], comprise a LISP-like recursively-defined

data representation model used for complex, structured data. Their main benefit is that

they do not require the presence of additional meta-data describing the structure. An

S-expression is a list of either atoms or S-expressions: (a (b c)). In this example the

expression contains an atom ”a” and an S-expression, which contains in turn two atoms,

”b” and ”c”. S-expressions are simple, useful, and well understood. [36]

Simplicity and readability of the ASCII-compatible UTF-8-encoded S-expressions used

in conjunction with plain-text data in devmon ensures that most of the time allocated for

this research was spent working on important code instead of designing, debugging and

modifying XML schemas, parsers or data. A more detailed discussion on s-expressions

and XML can be found on the SuperMon web site at [37] or the paper “Supermon: A

High-Speed Cluster Monitoring System” [36].

Note that some of devmon’s files output their information as tab-separated plain text

CHAPTER 3. SYSTEM MONITORING 36

files. This has been done to allow easier integration with existing Plan 9 tools such as

stats, a data visualization program for system monitoring. Figure 3.3 shows an example

of stats displaying information gathered by devmon.

I want to emphasize that the choice of data representation or the format of control

messages was made out of concern for simplicity. While there are some benefits in choosing

a simple set of messages formatted as s-expressions, a more ambitious project may freely

switch to XML, indentation-based, binary or any other format available. Simplicity and,

in the case of montcl’s control messages, syntactic clarity were the main reasons for

choosing the set described here.

3.2.2 Connecting to Devmon

Connection to the devmon kernel device is established with a mount system call invoked

via the bind command, described in more depth in section 2.2. The device name used as

an argument to bind is the UTF-8 rune which the device registers itself under ”∞” in the

case of devmon. The command bind requires at least two parameters: the name of the

kernel device and a directory name where this device is to be bound. The -c argument

in the following example specifies that writes to the kernel device will be allowed, though

still subject to the permissions the device specifies:

% bind -c ’#∞’ /tmp

% cd /tmp

% ls -l

--r--r--r-- ∞ 0 bootes bootes 0 Aug 19 10:22 /tmp/fans

--rw-rw-r-- ∞ 0 bootes bootes 0 Aug 19 10:22 /tmp/monctl

--r--r--r-- ∞ 0 bootes bootes 0 Aug 19 10:22 /tmp/mondata

--r--r--r-- ∞ 0 bootes bootes 0 Aug 19 10:22 /tmp/temp

%

File sizes reported by devmon are given as zero, and their creation time is the start time

of the program. The file size is a consequence of the fact that all files are generated

on the spot and do not consume any storage space. The owner of the device is the

host owner of the computer, equivalent to a reduced-privilege administrator in the Plan 9

CHAPTER 3. SYSTEM MONITORING 37

world. All permissions are specified and controlled explicitly by devmon, with the following

restrictions:

� only the host owner can write to the control file

� anyone can read from the data files

� writing to data files is forbidden

The host owner can modify a file’s permissions using the chmod command. Writing to

any of the data files makes no sense in the context of devmon because it won’t allow any

of the kernel variables to be set through it, as it would constitute a security breach. In

the following example a normal user attempts to write a control message to monctl:

% echo ’context false’ > monctl

monctl: rc: can’t open: permission denied

%

Note that access to devmon is not limited to the local computer since the 9P protocol

allows access to the files served by devmon from other computers on the network, provided

that one can authenticate and connect to the original host. This simple arrangement is

utilized in ResFS, discussed in chapter 4, where directory hierarchies served by different

computers on the network are bound together to create a single view of 9grid. Thus, one

can import devmon devices from various machines and query all of them from the local

prompt without having to explicitly connect for each operation.

3.2.3 Accessing Devmon

Reading from devmon’s files returns information about the state of the computer or

the kernel module itself, which is dynamically generated. Writing to the control file a

predefined string of monctl control messages will control device parameters.

Reading mondata will output an s-expression containing the name of the computer and

the current values for several kernel variables which monitor performance and load on the

CHAPTER 3. SYSTEM MONITORING 38

system. It will also query the hardware monitor on computers which have motherboards

with supported chipsets. An example s-expression obtained from mondata follows. Note

that data has been formatted to fit the screen since pretty-printing s-expressions is not

required when parsed by computers:

% cat mondata

(

(sysname plan9-2)

((cpu 0) (interrupts 104952577) (syscalls 428685)

(pfault 63575) (tlbfault 0) (tlbpurge 0) (load 0) (inidle 99)

(inintr 0) (systemp 28) (cputemp 22.0) (vtemp 208.0)

(mbfan 2647) (cpufan 2244) (pwfan 2466)

)

)

The s-expression contains recursively defined s-expressions for each CPU available on

the system. For each CPU it recursively defines s-expressions containing atoms carrying

the current value of a kernel variable. The values reported in this version of devmon and

their data types are summarized in Table 3.1.

This s-expression is completely self-contained and holds all information available for

this computer. It can be concatenated with any number of reports from other computer

to produce an s-expression describing a set of nodes on a cluster or clusters connected in

a grid. With timestamps added in, it can be used to monitor the system status as a time

series.

Reading the two other data files currently served by devmon, fans and temp will

cause devmon to query the hardware monitoring device on the motherboard and output

a single line containing tab-separated integers. For the fans file the three numbers are

motherboard fan, CPU fan and power fan respectively, for temp the two numbers are

system temperature and CPU core temperature. The motherboard temperature, vtemp

reports no value because there is no device connected to it. An example of using fans

and temp follows:

% cat fans

0 2280 2428

CHAPTER 3. SYSTEM MONITORING 39

Name Type Description

sysname String The host name of the computer

cpu Long The CPU number for which the values are reported

interrupts Long The interrupt count since boot up

syscalls Long The syscalls executed since boot up

pfault Long Page faults since boot up

tlbfault Long Translation lookaside buffer faults

tlbpurge Long Translation lookaside buffer purges

load Long System load; number of processes in Running state * 1000

inidle Integer[0:99] Percentage of time spent idle

inintr Integer[0:99] Percentage of time spent servicing interrupts

systemp Float Motherboard ambient temperature

cputemp Float CPU core temperature

vtemp Float Motherboard temperature

mbfan Long Motherboard fan speed, in revolutions per minute

cpufan Long CPU fan speed, in revolutions per minute

pwfan Long Power supply fan speed, in revolutions per minute

Table 3.1: Data, description and data type format for mondata

% cat temp

21 28

%

The reason for this change in data format are legacy Plan 9 tools, which expect to find

tab-separated digits and strings when reading files. Some tools also deduce information

from secondary clues, such as the number of lines that a file outputs when read, which is

definitely a shortcoming of the current Plan 9 model. In the overhaul of system monitoring

planned for the period during preparation of Plan 9 for HPC and clustered environments

all those tools will be modified to accept s-expressions [34].

CHAPTER 3. SYSTEM MONITORING 40

3.2.4 Controlling Devmon

Monctl is used to obtain and control various configuration flags for the device. Reading

monctl returns information about settings of mondata output flags. Output flags control

mondata’s output and decide whether it will write out information about a particular

variable it monitors. Here is an example of monctl set to output all possible information:

% cat monctl

(

(context true)

(interrupts true)

(syscalls true)

(pfault true)

(tlbfault true)

(tlbpurge true)

(load true)

(inidle true)

(inintr true)

(systemp true)

(cputemp true)

(vtemp true)

(mbfan true)

(cpufan true)

(pwfan true)

)

%

Writing to the same file sets those flags via plain-text control messages containing the

name of the flag and a keyword, which is either true or false, as in the following example,

ran as the host owner, which queries the number of context switches in the kernel since

boot time and turns the display of such information off:

echo ’context true’ > monctl

grep context monctl

(context true)

grep context mondata

(context 14814580)

echo ’context false’ > monctl

grep context mondata

#

CHAPTER 3. SYSTEM MONITORING 41

3.2.5 Implementation

This section discusses the implementation of devmon’s kernel module. Of special im-

portance is to note that the implementation of the entire devmon is extremely small at

343 lines of C code, or 284 physical lines of source code, if empty spaces aren’t consid-

ered. The usefulness of the 9P protocol as a communication tool is aided by the ease

and simplicity of implementing 9P servers, a much easier task for a programmer than a

comparable tool for a different operating system. The code for devmon is listed in its

entirety in Appendix A.1.

Initialization

Plan 9 does not currently implement loadable kernel modules, therefore devmon is written

a kernel device compiled directly into Plan 9 CPU kernels. The Dev structure initialized

at line 323 contains the name of the device and the Unicode character that can be used

to attach to it initially: ”∞”. It also contains the function definitions corresponding to

all device functions, listed in Table 3.2. Whenever a function name does not start with

“mon” then the default kernel handler is being called.

The moninit function at line 145 is the first function called when the kernel starts

up. It initializes the Mon’s output flags to print all information and enables the Winbond

hardware monitor, discussed in more detail in section 3.3.

Open

Monattach at line 318 is called whenever a new client tries to access the device via the

mount system call. It calls the default devattach routine which creates the communica-

tion channel for the device and sets its name. In devmon the name is “∞”. Monwalk at

line 158 is a stub that calls the default kernel walk routine since devmon’s file structure

is static. Monstat, monopen and monclose also use default handling routines.

CHAPTER 3. SYSTEM MONITORING 42

Read

The most important routine of devmon is monread at line 181. Monread handles read

requests by devmon’s clients, grid jobs or just system users. When a client sends a Tread

9P request it is handled by the kernel and the monread function is called to format the

appropriate Rread response. The read request comes coupled with a number indicating

which file it is attempting to read, held in the Chan structure. If the file indicates the root

directory of devmon the code generates a list of all files currently served by it by passing

the root and the number of elements in the mondir structure to the kernel devdirread

routine. If the file is monctl (line 191) devmon will generate a listing of all the possible

display flags and their settings. Mondata on line 197 prints out statistics from various

kernel variables and reads the hardware monitor for temperature and fan speed values.

Qtemp and qfans simply read the sensors on the hardware monitor and print-out their

values.

Write

Writing to devmon files is meaningful only in the case when the administrator is writing

to the monctl file to set or clear any output flags. Monwrite, starting at line 273, parses

the written data line by line and if it matches any of the preset control messages then the

flag is set or cleared according to the command. Writes to all other files return an Rerror

9P message.

Close

Closing the device and unmounting it are handled by the kernel.

3.2.6 Data Exchange Example

To illustrate devmon’s data path, this section follows data exchange and device operations

as they occur during a sample interaction with a user like any of the examples listed above.

CHAPTER 3. SYSTEM MONITORING 43

In this example a client will read from the tmp file using a tool that opens, reads and

closes a file, namely cat.

1. A client issues a command to access (read) from the temp file

2. The kernel’s mount device, which is responsible for mounting the driver in the first

place and handles the initial Tattach message, converts the read() syscall into a 9p

message of type Tread and sends it off through the channel to devmon

3. The kernel which runs devmon (it could be the kernel running the same computer or

a different machine connected by a network) transforms the message into a call to

the monread() routine of the driver, which determines which file the read refers to

and formulates a Rread response message containing the value of the corresponding

variable as its payload or returns an Rerror message if access isn’t granted

4. The kernel at the originating computer converts the 9P response into raw data

completing the system call

3.3 Hardware monitoring

Devmon has been programmed to query data from on-board hardware monitors on moth-

erboards that contain the Winbond W83627THF Low Pin-Count peripheral device [49].

Winbond W83627THF integrates functions such as the disk driver adapter, serial port,

parallel port, keyboard controller, hardware monitor and others. The device also provides

hardware status monitoring functions which can be used to gather information about

several critical system parameters including power supply voltages, fan speeds and tem-

peratures. These functions can be used to support stable and proper operation operation

of the computer and to prevent failures. Devmon does not handle power supply voltage

monitoring as it is currently meaningless in the context of distributed computing, but in

a tightly-coupled cluster environment such information may prove very valuable.

CHAPTER 3. SYSTEM MONITORING 44

Sensors

The Winbond W83627THF device contains three temperature and three fan-speed sen-

sors. The temperature sensors correspond to CPU core temperature, motherboard chipset

temperature and ambient temperature within the case. Of these three the most interesting

one is the CPU core temperature, which exhibits the greatest variation (see Figure 3.3).

The CPU fan sensors monitor the CPU fan, the power supply fan and a secondary fan

that can be plugged in to cool hard drives or simply circulate the air within the computer

case. The motherboards available for this research are equipped only with the first two.

The Winbond W83627THF device has the additional ability to raise an interrupt

whenever one of its sensors exceeds a high or low watermark. Plan 9 does not implement

routines for handling this case, but in the future it may be modified to take action whenever

such an interrupt is raised, perhaps by shutting down a computer or sending a message

to support staff [34].

Access

Accessing the Winbond W83627THF hardware monitor is accomplished by reading and

writing registers in the PCI address space. To read a value from a register we write the

register number at the register index address and read the value from the register data

address. Writing a value is done by writing the number of the register it wants to write

to in the index address, and the value to the data address.

The register index address for Winbond W83627THF is located at PCI address 0x295,

data register is at 0x296. Table 3.3 lists some of the more important registers for the

Winbond device. The CPU and ambient temperature sensors are separated into two

registers because they report with half a degree of precision.

For example, to enable the hardware monitor devmon writes the value 0x3 to its

configuration register, Cr. This is accomplished by first selecting the Cr register in Register

Index, then writing the value to Register Data. Thus devmon first writes the value 0x40

to PCI address 0x295, then the value 0x3 to register 0x296. To read the temperature of

CHAPTER 3. SYSTEM MONITORING 45

the motherboard devmon writes the value of the motherboard temperature register SysT

(0x27) to the index register Tidx (0x295), and reads the data register Tdata (0x296) to

obtain the reading. Reading and writing via the index and data registers are abstracted

in the wbr and wbw routines at lines 114 and 107 in devmon.c.

Visualizing Devmon Data

Figure 3.3 illustrates a visualization of devmon monitoring a Plan 9 CPU server. The graph

is created by a version of the stats utility which I modified to use information provided

by devmon. Stats draws time-based histograms with frequency of 1Hz. The most recent

values appear to the right. The graph sections from top to bottom correspond to “system

load”, “CPU temperature”, “motherboard ambient temperature”, “CPU fan” and “power

supply fan”. The drops of the speed of the CPU fan were artificially induced with a sharp,

pointy object thrown between the fan blades. The graph illustrates the close correlation

between core CPU temperature and the load of the system (or how busy the CPU is).

Adding Other Hardware Monitors to Devmon

Expanding devmon to monitor more hardware devices is quite easy, though limited in my

case by the availability of hardware. There are many different vendors of such chipsets,

often with conflicting hardware implementations. The lm-sensors kernel module [50]

provides implementation for many legacy devices and some code from it may be integrated

into devmon in the future. Devmon itself has a highly modular design, so adding a new

device involves changing a handful of lines of code to recognize the device and call the

corresponding read/write routines. If the device is a PCI one devmon can use standard

kernel routines to probe and configure it. Examples of such routines used to configure the

hardware monitor are found in lines 107 and 114 of the source code listing in devmon.c.

CHAPTER 3. SYSTEM MONITORING 46

Figure 3.1: Devmon monitoring a Plan 9 CPU server. The first row

monitors system load. The second and third rows monitor the CPU

and motherboard temperature sensors respectively. The fourth and

fifth monitor CPU and power fans. Note how the CPU temperature

increases sharply with the system’s load, and less sharply when the cpu

fan is stopped. The scale on the Y axis is [0,1000], except for the

temperature scale, where it is [0,50]

3.4 OS monitoring

The Plan 9 kernel was designed to accommodate operating system monitoring for perfor-

mance analysis as well as profiling and as such provides valuable performance, execution

and statistics counters.

Devmon uses the ones which are deemed to be the most interesting from an evaluation

and prediction point of view. I explain them below, with a short description of what

extreme values for the particular counter may mean.

CHAPTER 3. SYSTEM MONITORING 47

interrupts a per-cpu counter for the number of interrupts triggered; a high interrupt

count can indicate a faulty hardware device

syscalls the number of syscalls executed by the kernel; a rapidly increasing syscall counter

indicates that a large portion of the run time is spent running functions in the kernel

instead of running other programs

pfault number of page faults in the virtual memory subsystem; page faults cause system

slowdown since the data in the page needs to be fetched from secondary storage

tlbfault the Translation Lookaside Buffer, or TLB, is used as a cache for page table

addresses; TLB faults mean that memory accesses performed by the program are

more expensive

tlbpurge whenever the kernel switches the context of the currently running program with

another the TLB must be purged

load system load is calculated based on the number of processes in the Running state

waiting to be executed; a high number here can indicate that the system is running

processes inefficiently or is overloaded with jobs

inidle percentage of the time the CPU spends in idle state; on an optimally performing

system this number should approach 0

inintr percentage of the time spent servicing interrupts; any number significantly larger

than zero could indicate badly written hardware drivers or a misbehaving device

Devmon accesses those variables via the per-processor struct Mach, which describes

the system’s architecture. For example, to see the number of interrupts serviced by CPU

1 devmon reads mach[1]->intr. The complete definition of the Mach structure is given

in Appendix A.4.

CHAPTER 3. SYSTEM MONITORING 48

3.5 Performance of Devmon

Evaluating devmon’s performance takes into consideration the fact that there are two

basic modes of operation a client can utilize. The first, and by far the most common,

is the simple interaction with the files devmon serves via standard Plan 9 utilities and

programs such as cat, ls, grep, awk and others. It is the one illustrated in previous

sections and exemplified by the situation in which a client runs a Plan 9 command such

as cat, which opens one of devmon’s files, reads the information from it, writes it out to

a file and exits. The second is when a command opens one of devmon’s files for reading,

reads it, but instead of closing it seeks back to the start of the file and reads it again,

obtaining a new reading from devmon if any of the variables monitored have changed.

The first mode of interaction involves external factors such as loading a binary and

executing it, which increases the completion time for the operation. However, since it is by

far the most common way of accessing devmon, it has been measured. The measurement

was done with a shell script that performed the following operation 1000 times:

cat mondata

The second mode of interaction gives us a better idea of how well the 9P protocol

performs and especially how fast the data path between a kernel and userland is. It was

measured by creating a very simple program that performed the following operation:

open file mondata;

repeat 1000 times

read mondata into buffer;

write out buffer;

return to start of mondata

close mondata

exit

The results, which are summarized in Table 3.2, indicate that the Plan 9 kernel has a

very fast data path and that devmon and the 9P protocol are sufficiently fast to saturate

a 100-megabit network connection in the case where there are multiple clients. In fact the

reason tests with multiple networked clients aren’t included here is that the results were

CHAPTER 3. SYSTEM MONITORING 49

Connection type Data size (bytes) Queries/second

cat 208 526

seek 208 25672

Figure 3.2: Maximum number of queries for the two major types of devmon access

purely network-bound. Performing devmon tests on gigabit networks will are planned for

the future, pending the completion of gigabit ethernet drivers for Plan 9.

3.6 Devmon and Other System Monitoring Tools

Of the numerous OS and hardware monitoring tools that I have evaluated for my research

I found that very few are general enough to work in a grid environment: SNMP is geared

towards networks and routers in general and involves the installation of complex implemen-

tations; the UNIX /proc is often incompatible between different distributions of different

OS vendors and even between different kernel versions of the same OS; programs such

as Big Brother [63] are used in web server monitoring and have a monitoring frequency

of about half an hour; MRTG [65] is highly configurable but geared towards visualizing

trends.

The most useful system monitoring tool for UNIX, sar, part of the SysStat system

monitoring suite [66] provides the most information about the current status of the system

by interfacing with the /proc file system on a host of operating systems. Sar is very similar

to devmon in spirit, but there are a few major differences:

� sar relies on its own internal binary data format for storing and retrieving information,

thus requiring a sar binary to be present on the host where this information will be

accessed

� sar is portable across different UNIX and UNIX-like systems, but it provides a dif-

ferent set of information on each one of them; for example on Linux it reports disk

CHAPTER 3. SYSTEM MONITORING 50

block read and writes and memory faults, while on IRIX it reports disk block read

and writes, memory block reads and writes and cache hits

� sar’s binary file formats aren’t portable across platforms

� Monitoring several nodes with sar requires special provisions to be made for storing

and labeling the data files

3.7 Future Devmon Development

Apart from the features which devmon lacks, most of which concern hardware monitoring

(listed in Section 3.3) there is one major area devmon could be extended to: I/O statistics

gathering. Distributed computing almost always consists of applications that access the

majority of their resources over the network. Knowing which services, networks and files

are being used the most could aid in improving 9grid’s performance and accounting or

give an idea where a job spends the most of its time.

Plan 9 already provides such information on a per-process basis via the iostats

command, which prints information about processes, but instead of their execution times

it lists what files have been read and written during the execution of that process. Plan 9

also keeps information about how much CPU time a process and its children have spent

during its execution. Generalizing such information gathering over all processes running

on a node will be an interesting, albeit difficult task.

Devmon is the first step in an overhaul of the Plan 9’s monitoring tools, planned by

me and several other developers [34]. This overhaul will enable faster, better organized

and controlled view of the system in clustered environments. The overhaul was proposed

by me as an attempt to satisfy the requirements imposed on operating systems by today’s

heavily clustered HPC installations and the move towards grid computing.

The modifications involve building an integrated hardware and OS monitoring file

system for Plan 9. The way it works right now is awkward and difficult to maintain –

there are a plethora of files served by different kernel drivers providing information about

CHAPTER 3. SYSTEM MONITORING 51

different parts of the system. Each file usually has its own specific encoding and presents

information differently than the others. For example, shown below is the output of two

files: /dev/sysstat and /net/ether0/stats. The first gives information about the

number of processes and the system load, among others, the second provides statistics

about a network interface:

% cat /dev/sysstat

0 400895223 953044579 1223836144 12045184 \

0 0 0 99 0

% cat /net/ether0/stats

in: 28451697

link: 0

out: 34406060

crc errs: 0

overflows: 0

soft overflows: 0

framing errs: 0

buffer errs: 0

output errs: 0

prom: 0

mbps: 100

addr: 0040058340ba

plan9%

As you can see, the formats are different and sometimes incomprehensible. Any program

that wants to use such information opens those files and parses the information read from

them. This task involves writing several different parsers and leads to some errors, such as

the “stats” visualization utility, shown in figure 3.3, not working properly for a few months

after the format of the /dev/sysstat file was changed by one of the Plan 9 developers.

Nobody noticed the change and the parser was happy to assign 0 to the value it missed.

The change I propose involves taking the relevant bits of information directly from the

device drivers and integrating it into a monitoring file system that presents a standardized

view of the system’s operational statistics. The file system’s design is as follows:

/dev/stats/

sysname

time

CHAPTER 3. SYSTEM MONITORING 52

bintime

memory/

total

used

nusers

nprocs

cpu0/

irqs

syscalls

...

cpu1/

irqs

syscalls

...

ether0/

in

out

err

...

ether1/

in

out

err

...

disk1/

in

out

used

total

...

disk2/

...

The directory /dev/stats is arbitrary and simply indicates a possible mount point

for the device. Consider /dev/stats/ the root of the file hierarchy. Files in the main

directory of devmon provide global information about the computer, such as its name, the

current time, the timezone it is a member of, the number of users, the number of processes

running, system load and others. Each component, of which there may be multiples on a

given computer, has a directory dedicated to it. Such directories are given to processing

CHAPTER 3. SYSTEM MONITORING 53

units, storage disks and devices such as network controllers. Each subdirectory contains

files that report information about the single device only, therefore if one wants to gather

the total count of interrupts on the system they can sum up the different files in the

directory. With s-expressions and a LISP interpreter this can be done via a command

formed from the standard shell:

; ’(+ ‘{cat cpu*/irqs})’

There are several utilities in existence which accept fully bracketed reverse polish nota-

tion arguments and can be used in shell scripts to calculate and graph data. The most

important change, however, is that each file reports only a single number to avoid having

different formats or having to parse through text.

I have also been working closely with the team developing SuperMon, a lightweight,

high-speed cluster monitoring tool, with which devmon is compatible at the data-exchange

level. I hope to merge the two architectures and extend them to work in a grid environment

in the future.

3.8 Summary

This chapter provided a description of the Plan 9 kernel device devmon developed as part

of this thesis. Devmon is used in 9grid to present system monitoring information as a

network-accessible file hierarchy. The chapter discussed the design and implementation of

devmon, the control messages it accepts and the methods for disseminating information

that it uses. It also looked at the performance of devmon and how it may fare in a large

cluster or grid environment. Devmon was also compared with other system monitoring

software solutions.

This chapter also examined how devmon interacts with the hardware monitoring device

Winbond W83627THF, which is found on the University of Calgary 9grid computers and

used to monitor the cpu fan speeds and temperature sensors on Pentium IV motherboards.

CHAPTER 3. SYSTEM MONITORING 54

Name Function

devreset reset the device

moninit initialize the device

devshutdown shutdown

monattach a client is trying to mount the file system

monwalk a client is changing its current file to be a file in the file

system’s hierarchy

monstat a client is trying to find a file’s stats information. last

changed date created, size, etc.

monopen a client is opening the device for reading

devcreate a client is trying to create a new file in devmon’s directory

monclose a file is closed for reading

monread attempt to read from a file

devbread buffered read is attempted from a file

monwrite attempt to write to a file

devbwrite attempt to do a buffered write to a file

devremove attempt to remove a file

devwstat attempt to modify a file’s stats information, such as running

the chmod command

Table 3.2: Functions in the implementation of devmon

CHAPTER 3. SYSTEM MONITORING 55

Register Name Register Address Register Function

Tidx 0x295 Register Index

Tdata 0x296 Register Data

SysT 0x27 Motherboard temperature

Fan1 0x28 Fan 1

Fan2 0x29 Fan 2

Fan3 0x2a Fan 3

Cr 0x40 Device configuration

Fdr1 0x47 Fan divisor used in calculating rpm

Did 0x49 Device ID

CpuTHi 0x50 CPU temperature sensor bits 8:1

CpuTLo 0x51 CPU temperature sensor bit 0

VTHi 0x50 Ambient temperature sensor bits 8:1

VTLo 0x51 Ambient temperature sensor bit 0

Table 3.3: Important registers for the Winbond W83627THF hardware monitor

Chapter 4

Resource Discovery

56

CHAPTER 4. RESOURCE DISCOVERY 57

Resource discovery in the context of grid computing allow programs to query the

existence and features of services available in a distributed environment. On a single-

node, non-distributed system resource discovery utilities have existed for a very long time

and are generally familiar to users. Programs such as who, uname, the proc file system and

others are used frequently to find out the limits and current utilization of various resources.

Extending these familiar paradigms to a distributed environment involves design decision

addressing various issues such as:

� Security – who is allowed access to the information presented by the resource and

operating system monitoring subsystem?

� Data acquisition – what is the best way to gather the data with minimum effect on

the system’s performance?

� Scalability – how does the system handle an increase in the resources it must mon-

itor?

� Caching – how does the system preserve state between successive connections; what

caching mechanisms does it employ to facilitate faster information retrieval?

� Interface – how does the system compare with existing, non-distributed, resource

discovery services?

There are two different approaches to implementing resource discovery: creating a

brand new set of tools specifically designed to work in a distributed environment, such

as the OpenLDAP [33] directory, or extending a familiar set of operating system utilities

to work across networks. The standard Plan 9 resource discovery mechanisms take the

second approach. OpenLDAP is the current leader in providing resource discovery for

legacy operating systems such as UNIX, Linux and Windows. OpenLDAP is open source

and is used by the Globus middleware toolkit and most other distributed environments

running on legacy systems. It is well understood and provides solid and robust performance

that scales reasonably well with the environment. OpenLDAP’s role in HPC clusters and

CHAPTER 4. RESOURCE DISCOVERY 58

supercomputers is relegated mostly to authentication since it is unable to satisfy their very

high scalability and performance requirements.

There are several reasons why a port of OpenLDAP to the Plan 9’s grid environment,

9grid would not be beneficial:

� OpenLDAP requires a database backend such as Berkeley DB [64], which isn’t

readily available for Plan 9 and the porting of which would be very expensive for a

one-person project

� Some OpenLDAP clients are written in languages unavailable for the Plan 9 plat-

form, such as Java (attempts to port a JVM to Plan 9 have stalled due to the

readily available language Limbo, which serves the same purpose)

� OpenLDAP does not fit well with the “everything is a file” model employed by all

other Plan 9 system resources and programs. To rewrite OpenLDAP so that it

presents its resources in the form of files would be just as difficult and complex task

as writing a completely new client from scratch

� The overall success of OpenLDAP leaves a large area of solutions to the problem of

distributed resource discovery unexplored

This chapter introduces ResFS, resource discovery software written as part of this

research and used in 9grid. Section 4.1 describes the standard resource discovery mecha-

nisms already available in Plan 9. The design of resfs has been modified to accommodate

these mechanisms preserving the feel of the system, while extending its functionality en-

abling it to work in a grid environment. Section 4.3 provides the reasoning behind the

choices I have made in creating resfs, its integration with the rest of the Plan 9 operating

system, the requirements it must fulfill, data types and caching policy decisions. Section

4.2 describes the reasoning behind resfs and gives examples of its use. Section 4.4 dis-

cusses its features while Section 4.5 talks about the implementation and design of resfs.

Performance metrics and analysis are discussed in Section 4.6.

CHAPTER 4. RESOURCE DISCOVERY 59

4.1 Standard Resource Discovery in Plan 9

Resource discovery solutions in the context of a single distributed environment have existed

since the very first Plan 9 release in 1991. System services exported by the kernel are

commonly accessed through a naming convention, depending on whether or not they

have been compiled in the kernel. All of Plan 9’s devices export a directory hierarchy

corresponding to their internal structure and design. Each device has a single-letter name,

which is used to refer to it when the first mount is performed. An example of a Plan

9 device driver can be found in Chapter 3 where devmon, a hardware monitoring kernel

module for Plan 9, is described.

A list of the currently available drivers that have been compiled in the kernel is gen-

erated whenever the file /dev/drivers is read.

% cat /dev/drivers

#/ root

#c cons

#P arch

#
�
pnp

#e env

#| pipe

#p proc

#M mnt

#s srv

#d dup

#r rtc

#D ssl

#a tls

#B bridge

#E sdp

#K kprof

#l ether

#I ip

#∞ devmon

%

The computer in this case is a CPU server so there are a few devices missing, most

notably #m and #v (mouse and vga) which are normally used only on terminals. The

CHAPTER 4. RESOURCE DISCOVERY 60

file directory structure that the device drivers present is bound to /dev during login,

therefore in order to discover the basic capabilities of the system a user needs to visit only

/dev/drivers and examine this file to find out what is available. It is very common in

the course of daily interaction with the system to have a command fail because a kernel

resource is not bound to dev or another directory where expected. In such cases a mount

command is executed to bind the resource’s file system hierarchy from the kernel device

into the local namespace. In the cases where the current kernel does not have the device

compiled in it could be mounted from a remote system, if that suits the user.

An often used example on Plan 9 systems is to have only one network interface to the

outside world and the Internet. When jobs or users want to access external resources they

mount the interface over the local /net hierarchy and have all subsequent network traffic

routed through there. In the past, when most Plan 9 networks used the IL [8] network

protocol and only a few computers connected to the Internet implemented TCP interfaces,

importing a remote /net was the only way to access the Internet. The “everything is a

file” approach greatly simplifies both the kernel implementation and user interaction with

kernel devices and other services. Figure 4.1 illustrates how a user’s namespace may be

composed of different devices bound to predefined places in the system.

User-level servers, which are normally run by user programs and are not compiled in

the kernel are discovered in a slightly different manner because they do not have # names

associated with them and because communication with them is not initiated through the

kernel. Plan 9 allows user-level programs to present their service and resource hierarchy

as a named file in a predefined directory. Other programs wishing to use those services

rendezvous at this directory and mount the directory structure rooted at the named file

in their own namespace.

A special kernel device called srv, which serves as a filter relaying messages between

two namespaces, facilitates this rendezvous. A process willing to share its namespace with

others can post a file descriptor pointing to the root of a namespace via the srv utility

to a specialized location on the system, namely /srv. Other processes then mount the

CHAPTER 4. RESOURCE DISCOVERY 61

ether0/

clone
data

tcp/
icmp/
udp/

USERKERNEL

#S

#c

#I

#l0

cons
drivers

net/
dev/
usr/

icmp/
udp/

tcp/

/

usr/

cons
drivers

dev/

net/

clone
data

Figure 4.1: Interaction between kernel device drivers and a user’s namespace. Arrows

correspond to mount calls issued by user programs.

desired file server hierarchy from /srv if file permissions allow.

The following is an example of /srv on a Plan 9 terminal serving a single user named

andrey. The files correspond to directory structures served by the the window sys-

tem (rio, riowctl), the security agent (factotum), the plumbing mechanism used for

context-dependent program execution, the text editor and the domain name resolver:

% ls /srv

/srv/acme.andrey.112

/srv/boot

/srv/cs

/srv/dns

/srv/factotum

/srv/plumb.andrey.78

/srv/rio.andrey.16

/srv/riowctl.andrey.16

/srv/slashn

%

At any point, provided that file permissions allow it, a user can mount the directory

pointed to by one of those files, or serve a part of the user’s namespace as a named file:

CHAPTER 4. RESOURCE DISCOVERY 62

% ls /mnt

% mount /srv/factotum /mnt

% ls /mnt

/mnt/factotum

% ls /mnt/factotum

/mnt/factotum/confirm

/mnt/factotum/ctl

/mnt/factotum/log

/mnt/factotum/needkey

/mnt/factotum/proto

/mnt/factotum/rpc

%

Figure 4.2 illustrates how two users can share a namespace through the “bulletin board

for file descriptors” – /srv; both users mount the #s device driver, user A exports the

/exp directory as a.srv, user B mounts a.srv in their own namespace.

USER B

/srv

file1
file2
...

/srv

a.srva.srv

file1
file2
...

/exp /mnt

USER A

KERNEL

#s

a.srv

Figure 4.2: Two users sharing a namespace through /srv. Both users mount the #s

device driver. User A exports the /exp directory as a.srv. User B mounts a.srv in

their own namespace.

In Plan 9 virtually everything is treated as a file in a directory hierarchy, therefore it

is easy to extend the /srv paradigm from the single system domain and have it work

across the network. In fact in Plan 9 the source code maintainers use exactly this

scheme to present system updates to Plan 9 users around the world. A person who

wishes to update their system installation imports the developer-maintained tree from

CHAPTER 4. RESOURCE DISCOVERY 63

sources.cs.bell-labs.com and presents it as a subdirectory in the current names-

pace. Finding out whether a file has been updated is as simple as comparing timestamps

or running a diff between the two directories.

Plan 9 also provides a Network DataBase service, abbreviated NDB. NDB serves as

the main name resolver when establishing a connection between various services on the

system installation and the computers providing those services. A typical usage of NDB

is to query for various commonly used components of a Plan 9 installation such as au-

thentication, CPU and domain name servers. NDB is aware of networked domains and

memberships, which makes it very useful for describing hierarchical structures such as

9grid. The following is an example of a typical real-life NDB configuration as used by the

University of Calgary Plan 9 installation:

ipnet=hidden ip=192.168.0.0 ipmask=255.255.0.0

proto=tcp

cpu=plan9.ucalgary.ca

fs=plan9.ucalgary.ca

auth=plan9.ucalgary.ca

authdom=plan9-hidden.ucalgary.ca

resourcefs=plan9

dns=136.159.5.14

dns=136.159.5.15

dns=128.233.3.1

dns=128.233.3.2

sys=plan9-2 ip=192.168.1.3 ether=0040f46ed68f

The first entry describes a network behind one of the University of Calgary firewalls. The

network assumes a local IP address. The proto entry specifies that terminals and CPU

servers should connect using the TCP protocol instead of the Il one. Cpu, fs, auth

and dns specify the addresses of computers which provide those services. Authdom is the

authentication domain to which this network belongs. The last line is a sample entry for

one of the computers belonging to this domain.

An NDB dæmon is started by every Plan 9 user as they log in to the system. The

NDB binary provides a control and data file named /net/ndb which the user can read to

CHAPTER 4. RESOURCE DISCOVERY 64

query information. Writing to the /net/ndb pairs of the form name=value will result in

value being returned whenever name is queried. Outside of general Plan 9 administration

NDB is used by resfs to cache information about remote grid nodes, as will be explained

in Section 4.3.

There are a couple of issues with the current state of resource discovery in Plan 9 that

prevent it from being extended across grid environments. One is the lack of centralization

in reporting the system resources available, which I have addressed in Chapter 3 with

devmon. The other is the lack of integration between system monitoring (devmon), the

network database services providing query services for resources (ndb) and the networked

environment spanning multiples of computers from different Plan 9 installations. ResFS

is created with the task of binding those components together and providing easy access

to information about resources on the grid.

4.2 ResFS

ResFS is a hierarchical file system utilizing the 9P protocol to present a set of directories

corresponding to computers on a network and files containing information about resources

on those computers. Resfs is a resource discovery mechanism for network-connected

environments such as 9grid.

The architecture of resfs has two components, namely leaf and aggregate nodes.

The leaf nodes usually reside on computation servers and announce themselves on one

or more registry services, which act as aggregates of information about a subset or a

complete set of nodes available to an administrative domain. Aggregates themselves can

be mounted together hierarchically as administrative groups combine to work together.

Registry services can also report to other 9grid registry services creating a global view of

the grid’s available resources.

Figure 4.3 illustrates one possible combination of grid resources. A, B and X are

administrative domains. A’ and B’ are alternative registries, local to their respective

CHAPTER 4. RESOURCE DISCOVERY 65

domains. Nodes run resfs directly, which creates a file system containing files reporting

the architecture of the node, the number of CPU’s available and the number of users on

the system at the current time. GridCtrl is a service that could be exported to the outside

world containing information about the entire infrastructure of the grid domain. Users

mount GridCtrl to gain access to the files exported by nodes on the entire grid provided

they have permissions to do so. There is no restriction on the number of grid controllers

one can have, i.e., GridCtrl does not hold exclusive privileges over the data and users are

allowed to query local registry services, such as A or A’ whenever they need access to a

subset of the information, or one that external users have no access to. Users can also

query a computational node by accessing its resfs directly, though in this case they need

to know the node’s name or its address on the grid.

arch
ncpu
users

arch
ncpu
users

node1 nodeN...

arch
ncpu
users

node2

arch
ncpu
users

arch
ncpu
users

Registry A Registry BRegistry X

node2node1 nodeN...

arch
ncpu
users

... ...

......

Registry B’

Registry A’

GridCtrl

Figure 4.3: A sample resfs structure in 9grid. A, B and X are administrative domains. A’

and B’ are alternative registries, local to their respective domains. GridCtrl is the main

grid controller.

Resfs presents a very flexible infrastructure without a superficially imposed order and

hierarchy. Another possible arrangement of resfs registries and nodes is illustrated by A’

and B’, which can be thought of as registries offering an alternative, restricted view of

the systems for users who aren’t allowed access to the full view available from GridCtrl.

CHAPTER 4. RESOURCE DISCOVERY 66

The arrangement of nodes and aggregates in resfs can match a wide variety of needs

and configurations. The only real limits are network latencies. For about four months in

2004 the Plan 9 installation maintained as part of the 9grid project at the University of

Calgary was used as a resource discovery station for computers around the world. A single

resfs aggregate registered clients from all over the world, including Finland, USA, Bulgaria

and Russia. Of course a single query for all computers in this environment took longer to

complete due to the latency of overseas networks and the fact that some computers were

on very slow connections. The latency of slow overseas connections can be overcome by

caching most of the data in the local per-user NDB database, or globally, per domain,

by the domain administrator. The NDB database is detailed in Section 4.1. The caching

policy decisions for resfs are described in Section 4.3.

4.3 Requirements

Resfs is a step towards creating administration tools for a large set of widely distributed

resources, unifying them in a single environment. This environment is similar, in terms

of features, interface and security, to the private namespaces which unify the resources

available to a single Plan 9 installation on a per-process basis.

The justification for creating resfs stems from the fact that even though Plan 9 is

a distributed operating system, meaning that it has the ability to connect many remote

resources into a cohesive environment, it was never designed to handle clustered and cross-

administrative environments. Even though it compartmentalizes function into separate

networked hardware it still aims to provide a single system image across all the computers

connected to it. A typical Plan 9 installation therefore is comprised of many separate

nodes, but presents each one with the same view of the system. This is a consequence

of Plan 9 being designed in a time when it was expected that the number of processors

available in a single, mainframe-like computational unit would far exceed the number of

users of that system [32]. In grids, on the other hand, users prefer to preserve the localized

CHAPTER 4. RESOURCE DISCOVERY 67

view of their workstations, which in most cases are highly personalized, and utilize remote

resources only when the need arises.

Plan 9 provides a few benefits other systems currently do not have, most notably

the simplicity and elegance of the 9P protocol, the protection of private namespaces

in multi-user servers and workstations and the seamless integration of resources on the

local network into the environment. The file server interface where everything is a file

reduces the complexity of resource discovery on the grid to the simple task of examining

the contents of files stored in a hierarchical directory tree, something most users are

intuitively familiar with. This interface also alleviates the burden of having to create

multiple new clients to allow access to the data. Writing specialized tools to make the

data provided by resource discovery mechanisms more presentable is a task that each grid

administrator has to undertake at one point or another. Java clients or perl scripts are

commonly used to extract the useful information from databases. A Plan 9 user familiar

with the shell, sed and awk is able to create much more powerful scripts adapted to the

particular job at hand very quickly. Having powerful shell one-liner commands at one’s

disposal gives a familiar “shell” feel, facilitated by its programmability. Users wishing for

a more user-friendly interface are welcome to use any file and directory browser available,

including a web browser able to navigate through a file hierarchy.

Programmability is key in this system, especially in aiding programming using alterna-

tive languages. There are no extra bindings required for working with resfs’ data, however

there are several types of languages which benefit from its data representation more than

others:

Regex-based Languages such as perl, awk, tcl, sed and others, which rely on string

manipulation using regular expressions benefit from the plain text representation of

all data in resfs.

LISP S-expressions [38] are easily manipulated in LISP. This was done in order to more

easily integrate resfs with SuperMon [36], the High Performance Cluster Monitoring

Tool.

CHAPTER 4. RESOURCE DISCOVERY 68

NDB Text output is formatted to be acceptable as a system node definition by Plan 9’s

Network DataBase service, described in Section 4.1, which is the standard tool used

to query network and environment information about the system.

On the technical front, resfs benefits by utilizing a scheme which does not force nodes

accumulating information about computers on the system to poll for information from leaf

nodes. Neither does it require leaf nodes to push such information out to the aggregates.

There is no midway storage anywhere on the system. There is no knowledge exchange of

the type and quantity of data passing between clients and leaf nodes. This means that,

besides the initial handshake between a leaf and an aggregate. There is no information

being exchanged between the two, except in the case where a leaf node goes offline. Resfs

aggregates therefore serve as a vector containing pointers to other systems’ local resfs

nodes. Its knowledge base is limited to knowing which computers are currently alive on

the network.

A step further into the realm of grid computing is the “no configuration required”

design of resfs’ aggregate nodes. This means that as long as the aggregate is functional

there is no limit to the number of CPU nodes that can be functional at any time, except

the limits imposed by the 9P protocol. There is no configuration step for any nodes in

resfs in fact; as soon as an aggregate is operational and the system is configured with

its location any number of leaf nodes can register to it. To visualize this one can think

of aggregates serving as bidirectional pipes between the client and the resfs running on

a leaf node on the system. The main purpose of the aggregate is to provide an easy

way of looking up the nodes available in the domain. It will not try to guess the user’s

desired actions by taking part in controlling leaf nodes or caching information about them.

The user has full control of how much of the information available should be queried and

retained via NDB.

This simple design leads to some surprising performance results such as the resilience

to overload of aggregate nodes. When attempting to overload the system with clients

the computers where the clients resided were overloaded first. Naturally a more complex

CHAPTER 4. RESOURCE DISCOVERY 69

system is desired, where an aggregate node contains information about the sum of all

nodes reported to it. For example an aggregate node for an administrative domain could

report information about the number of all available CPUs from all leaf nodes that have

reported to it. It could also report all the different types of architectures that it has access

to. This can very easily be achieved via an s-expression parser built into the aggregate

node, however it was omitted due to the relatively slow connection and wide geographical

distribution of organizations in 9grid, with most of the users being individual single-node

Plan 9 installations. Trying to provide up-to-date information for leaf nodes separated as

far away as Japan and Finland would slow down the aggregates unacceptably.

Resfs aggregate and leaf nodes avoid caching on purpose, aiming to provide only the

most up-to-date information available. This behavior is correct in the cases where making

decisions based on outdated information can prove costly. An example of such a scenario

is the case where a computationally expensive job is started on a set of nodes based on

an outdated load average reading immediately after another job has started there. The

two jobs are now competing for resources causing a delay in their completion.

Looking from the other side, there are many types of resource information that need

not be queried frequently on account of them being static most of the time. Such resources

include a host’s name, IP address, operating system type or architecture. A client would

not benefit by having to access such information often, even less so if the data happens

to be accessible only via a slow, high-latency connection. Resfs solves this problem by

utilizing Plan 9’s network database, NDB. The information provided by resfs leaf nodes

is given in a format accepted by NDB as a single node’s setting of name=value pairs.

Simply redirecting the information output by resfs’ stats file onto the local /net/ndb

file will cause this information to be cached locally. Updating the local copy of the remote

node’s resfs is as simple as performing the same operation twice, or using any of the

available NDB commands to set a specific name=value pair only.

CHAPTER 4. RESOURCE DISCOVERY 70

4.4 Features

Resfs has a multi-tiered architecture where parts of the system assume different respon-

sibilities depending on the task they have in resource discovery. There are two essential

types of roles, reporting and aggregating. Compute nodes, which typically play the report-

ing role, deliver status information when queried. Aggregates contain meta-information

about the location and availability of compute servers without holding or taking part in

the communication of data between client programs and leaf nodes. By mounting the file

systems exported by leaf nodes onto aggregates one can build hierarchies of aggregate

nodes. An entire grid can then be queried in a simple manner by recursively traversing

the directory structure from the top level.

4.4.1 Leaf Nodes

A typical leaf node reports information about the status of the system it is running on. It

generally includes information such as the number of processors, the hardware architecture,

amount of memory available and system load. This information is presented via a file

system interface which can be accessed using one or more of the following methods:

mounted locally by a user process running on the same system

imported remotely via a process running in the same administrative domain as the

system

imported remotely via the aggregate node responsible for the resfs system on this ad-

ministrative domain

The following demonstrates a sample session with resfs running on the local computer.

The user examines the /srv directory to see if there is a resfs instance running. The

running instance has announced itself under the name resfs and the user mounts it

under /mnt/resfs, which is previously shown to be empty:

CHAPTER 4. RESOURCE DISCOVERY 71

home% ls /srv

/srv/acme.andrey.112

/srv/boot

/srv/cs

/srv/dns

/srv/factotum

/srv/plumb.andrey.78

/srv/resfs

/srv/rio.andrey.16

/srv/riowctl.andrey.16

/srv/slashn

home% ls /mnt/resfs

home% mount /srv/resfs /mnt/resfs

home%

At this point the user has made a connection to the resfs instance and has obtained

a file descriptor/channel pointing to the root of its file hierarchy. The user runs a simple

command that lists the files available for queries. Note the file permissions and user

ownership. Resfs is being run by a single user, andrey, and does not allow any information

to be written to any of its files. Most files have familiar names indicating the information

they report.

home% ls -l /mnt/resfs

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/ctl

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/load

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/memory

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/ncpu

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/nproc

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/nusers

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/objtype

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/os

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/s-expr

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/stats

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/swap

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/sysname

--r--r--r-- M 115 andrey sys 0 Feb 2 17:18 /mnt/resfs/uptime

home%

Examining the files using cat yields data about the current status of the system:

CHAPTER 4. RESOURCE DISCOVERY 72

home% cat /mnt/resfs/load

load=0

home% cat /mnt/resfs/memory

memused=6942 memtotal=24268

home%

A simple script illustrates that the data is repeatedly updated and can be continuously

queried:

home% for (i in 1 2 3 4 5 6) { cat /mnt/resfs/uptime; sleep 1 }

up 2 days 08:57:58

up 2 days 08:57:59

up 2 days 08:58:00

up 2 days 08:58:01

up 2 days 08:58:02

up 2 days 08:58:03

home%

It can also be queried without closing the file by calling seek(0) and re-reading the

file again. There are no clients that currently implement this method except for test

purpouses.

The information presented in resfs’ files is explained below.

ctl the only writable file in resfs. When read the ctl describes the entire system,including

any policy that may have been set in a format usable by Plan 9’s network database,

NDB. When written to, it accepts value=variable pairs to be set in the local

NDB.

load when read, this file gives a numerical representation of the system load, which is

arrived at by using the formula 1000 ∗ p ∗ n, where p is the number of processes in

the running state for the time interval, and n are the number of processors available

on the system

memory when read gives the currently used and total amount of memory available on

the system in blocks of 4096 bytes

ncpu the number of CPU’s available on this system

CHAPTER 4. RESOURCE DISCOVERY 73

nproc the number of processes in the system, control over those processes is achieved

separately by importing the /proc file system

nusers the number of users logged in to the system

objtype the architecture of this particular installation, one of i386, alpha, powerpc, mips,

arm and possibly others

os the operating system type

s-expr same as ctl but given in s-expressions [38], which would allow the data to be

used in a cluster environment with SuperMon

swap the used and total amount of swap space available on the system, in block sizes

identical to the ones reported by memory

sysname the name of the computer

uptime the amount of time since last reboot for the system

The file interface is static, but it is possible to extend it in the future by dynamically

creating files to be monitored for data.

4.4.2 Aggregate Nodes

Aggregate nodes do not have a structure or a file interface besides a control file ctl

which accepts a few simple commands which manage the connected leaf nodes, cause the

aggregate node to report to a main controller node or to dump information about leaf

nodes into the NDB database.

The other file served by an aggregate node is a directory used to mount all leaf nodes

which have reported that they are operational. A typical resfs directory on a small grid of

three nodes, one aggregate and two leafs, with the aggregate node also running as a leaf

node, is shown in Figure 4.4.

CHAPTER 4. RESOURCE DISCOVERY 74

/ncpu
/os

...
/sysname=C

NODE A

NODE B NODE C

/ncpu
/os

...

/ncpu
/os

...
/sysname=A

/sysname=B

Figure 4.4: An example of resfs running on a small system of three nodes. B and C are

leaf nodes who have registered with A. A is also running its own leaf node server.

The directory structure visible to users who have mounted the aggregate in this case

will be:

home% ls /mnt/resfs

/mnt/resfs/ctl

/mnt/resfs/A

/mnt/resfs/B

/mnt/resfs/C

home% ls /mnt/resfs/*

/mnt/resfs/A/ctl

/mnt/resfs/A/load

/mnt/resfs/A/memory

/mnt/resfs/A/ncpu

/mnt/resfs/A/nproc

/mnt/resfs/A/nusers

/mnt/resfs/A/objtype

/mnt/resfs/A/os

/mnt/resfs/A/s-expr

/mnt/resfs/A/stats

/mnt/resfs/A/swap

/mnt/resfs/A/sysname

CHAPTER 4. RESOURCE DISCOVERY 75

/mnt/resfs/A/uptime

/mnt/resfs/B/ctl

/mnt/resfs/B/load

/mnt/resfs/B/memory

/mnt/resfs/B/ncpu

/mnt/resfs/B/nproc

/mnt/resfs/B/nusers

/mnt/resfs/B/objtype

/mnt/resfs/B/os

/mnt/resfs/B/s-expr

/mnt/resfs/B/stats

/mnt/resfs/B/swap

/mnt/resfs/B/sysname

/mnt/resfs/B/uptime

/mnt/resfs/C/ctl

/mnt/resfs/C/load

/mnt/resfs/C/memory

/mnt/resfs/C/ncpu

/mnt/resfs/C/nproc

/mnt/resfs/C/nusers

/mnt/resfs/C/objtype

/mnt/resfs/C/os

/mnt/resfs/C/s-expr

/mnt/resfs/C/stats

/mnt/resfs/C/swap

/mnt/resfs/C/sysname

/mnt/resfs/C/uptime

home% cat /mnt/resfs/*/sysname

sysname=A

sysname=B

sysname=C

home%

4.5 Design

This section discusses the design considerations for resfs.

CHAPTER 4. RESOURCE DISCOVERY 76

4.5.1 Leaf nodes

Resfs is about a thousand lines of source code written in the C language using libraries

common to the Plan 9 operating system, but which are also available for legacy systems

such as UNIX and Linux made available via the Plan9Port project [58]. The files are given

in appendix A.2 and correspond to:

� resfs-th.h – header file

� common.c – common operations

� policy.c – policy support functions

� resfs-th.c – main threaded code

� stats-th.c – statistics and monitoring

A leaf node in resfs is designed as a threaded application which could either be executed

from the cpurc boot script, or started by hand from a user connected to the system.

Using cpurc is the preferred case, since it will report itself to the local aggregate node

immediately after a reboot requiring no human intervention.

The static 9P file hierarchy is built at runtime by the binary and handed off to the 9P

server thread, which manages messages received by clients such as attach, walk, open,

read and close. It also takes care of maintaining a set of unique Fid’s for each client’s

request, as per the 9P protocol requirements [40].

All network connection requests are handled by the network thread, which refers the

network file id to the 9P server thread, but is otherwise not involved in the 9p communi-

cation.

Initialization

Resfs starts in the entry point of main() at line 276 of resfs-th.c where it parses its

arguments (lines 283-307). The arguments accepted by resfs are:

CHAPTER 4. RESOURCE DISCOVERY 77

-D print 9P protocol transactions to standard output

-d turn debugging on

-s name announce under name name in /srv

-P disable announcing to aggregate nodes

-u disable the update thread; information given by resfs will not be updated

-q do not listen on the network

-t num sleep time for update thread; num is in microseconds

After parsing the arguments resfs allocates a Tree structure which describes the file

system served by it (line 321) and creates the root file node, a directory pointing to the

beginning of the hierarchy (line 323). Next it populates the Tree structure with the file

names of the files it serves (lines 328-333) and if not disabled will call listensrv()

and calagg() which establish a listening process for serving users’ requests and call the

aggregate node to announce that the leaf node is up. The aggregate node’s system

name is obtained via the local NDB, which should be configured beforehand by the node

administrator. For 9grid it is normal to add the node which will be running as an aggregate

as part of the network configuration for the remote domain. The NDB configuration for

9grid domains usually includes the system names and IP addresses for the respective CPU

and auth servers, as well as the authentication domain and resfs system name. Having

completed the initialization stage of its life, resfs calls the update() function (line 342)

which establishes the update thread and then exits.

The Update Thread

The update thread (line 133 in stats-th.c, Appendix A.2.5) handles gathering the

system monitoring information from different sources on the node. First it forks the

update thread (line 140), then reads values from various files in the system and fills up

CHAPTER 4. RESOURCE DISCOVERY 78

the Machine structure for this computer. After it has done so the thread sleeps for a

predefined time and initializes the information again in a loop.

Client Requests

Client requests to resfs are generally handled by the network thread in the function

listensrv(), line 229 of resfs-th.c, appendix A.2.4. Listensrv() starts off by

forking itself from the main program (line 235) and establishing a listener to port 18000

(line 244), then it loops waiting for remote connections. When a client arrives listensrv

forks a process that will handle responding to the 9P messages received from this partic-

ular client (line 258). The network call is accepted at line 262 and the standard library

routine srv() is called, which will handle calling the appropriate routines whenever read,

write or walk requests are sent by the client; those routines are listed in Appendix A.2.2.

4.5.2 Functionality

There is no constraint on the information that resfs could access when started by a user

who can log in to the computer, since the default Plan 9 installation is fairly permissive

when it comes to reporting resources. In fact, all information available through a running

resfs instance is available to all users who can log in to the particular computer; resfs only

accumulates it and presents a unified interface for all computers on 9grid.

Resfs has the ability to update the data it reports at different intervals, the default

being 1Hz, i.e., once a second; an argument, -t, provided at runtime by the user who starts

resfs changes that value. The smallest update quantum in the current implementation is 1

microsecond. This results in 1000Hz updates, which is approximately twice the amount of

time it takes to process two consecutive 9P read requests, assuming they are independent

and need to perform a walk through the resfs hierarchy.

The leaf node utilizes the very lightweight and robust threads implementation in Plan

9, a descendant of the threaded language Alef [39]. Three threads are running at each

time, the 9P thread handles 9P requests, the update thread writes to a shared structure

CHAPTER 4. RESOURCE DISCOVERY 79

corresponding to the computer representation that resfs maintains and the network thread

manages client requests on the network port resfs listens to. Figure 4.5 illustrates the

organization of the leaf node.

mach
load
ncpu
uptime
...

Tree *
/load
/ncpu
/uptime
...

/srv

net

kernel

netthrupdatethr

9pthr

9p representation of the directory structure

Machine struct
representation of
system resources mount()

import()

Figure 4.5: resfs thread representation: updatethr handles the update of the computer

representation data structure, 9pthr reads and responds to 9P messages using a Tree *

structure, netthr listens on port 18000 and accepts requests from network clients.

The update thread is necessary in order to account for the fact that querying system

resources from outside of the kernel is more computationally expensive than serving the

query from local memory. If the update thread is removed a single request would take

much more than 0.003 seconds to complete, since that involves at least four extra system

calls: opening a file, seeking, reading and closing it. Updating “off-line” with respect

to the query means that the data is stored in easily extractable form and the program

does not parse the same data over and over again for different requests, which could

cause a denial of service. Having the update thread also frees up resources in case the

leaf node is flooded with requests. Most of the files resfs accesses involve kernel data

structures requests through kernel device drivers and avoiding frequent use of those frees

up computational resources.

CHAPTER 4. RESOURCE DISCOVERY 80

A source code listing for our prototype resfs leaf node is given in Appendix A, Sec-

tion A.2.

4.5.3 Aggregate Nodes

Aggregate nodes have a design very similar to the leaf nodes. The exception is that

they serve only a single control file themselves. Aggregates provide glue between the leaf

nodes and the clients. They could be thought of as a collection of union mounted remote

directories, each pointing to a leaf node resfs instance running on a remote computer

connected to 9grid.

Aggregate nodes start up the same way as leaf nodes, with the exception that they do

not have an update thread. Aggregates do not use static Tree * structures to maintain

the directory entries, instead they use a dynamically generated set of Fids for each leaf

node server that registers with the aggregate.

Whenever a connection to the leaf node is dropped, the aggregate uses a feature of

the 9P protocol to remove the file whose connection is timed out sending the so-called

clunk message back to the client. This ensures that even when computers and networks

may be going offline at any time the worst that clients will see is a very small delay in the

response, normally less than a second.

The aggregates handle commands written to the ctl file. The commands currently

available are listed below:

dump [node] dump the information from node node into the NDB repository for the

system

set variable=value set variable=value in the local ndb database

clear [node] delete a node connection, or all nodes; this is equivalent to running rm

node in the directory of the aggregate

quit quit the system, closing all client connections

CHAPTER 4. RESOURCE DISCOVERY 81

The ctl file is write-protected by anyone other than the person who started the aggregate,

which is usually the host owner of the computer. The source source code for the resfs

aggregates is listed in its entirety in Appendix A.3. Note that at 165 lines of code it is

extremely simple.

4.6 Performance

The performance of the early resfs prototype proved to be significantly better than ex-

pected. It is matching, if not exceeding, the performance of similar tools such as OpenL-

DAP [33] and SuperMon [36], this being a testament to the benefits of having simple

protocols handling the underlying data connections.

Tests indicate that in its very basic state, with a single lock per computer structure

or system description and a leaf node data update per microsecond resfs is able to serve

in excess of 600 basic queries per second, or at a rate of 600Hz. When the sampling

rates are increased from 1Hz gradually to 1000Hz the querying speed decreases linearly.

Figure 4.6 plots the queries per second versus the interval between different updates. It

shows that there is a fine line between how much information can be obtained for a given

interval and how often this information can be updated within resfs itself. Observing

the same patterns when querying resfs directly via the seek() system call (Figure 4.6)

indicates that the system is sensitive to the number of updates performed per given time

interval. An update interval smaller than 100 microseconds will cause the values reported

by the leaf node to measure resfs itself predominantly, superseding any other jobs running

currently on the system. A solution to this problem can be achieved by imposing hard

restrictions on the minimum time between resfs updates from sources outside of resfs’

control, such as external drivers or protocol interfaces. A basic optimization similar to

this is already built in resfs and it will not query persistent information such as the IP

address of the node or the system’s name more than once. The test set-up for Figure 4.6

involved wallclock timing of 1000 queries achieved by executing the command cat load.

CHAPTER 4. RESOURCE DISCOVERY 82

 450

 500

 550

 600

 650

 1 10 100 1000 10000

qu
er

ie
s

pe
r

se
co

nd

update interval (microseconds)

Performance of ResFS using the 9p protocol

"resfs-queries-per-update-interval.data"

Figure 4.6: Maximum number of queries per second performed to a local resfs server,

versus update interval for the update thread in microseconds.

#!/bin/rc

for (i in ‘{ seq 1 1000 }) { cat /mnt/resfs/load }

Figure 4.7: Testing resfs from userland

Resfs is mounted locally, the cat binary given in Figure 4.7 is also local, i.e., there is no

file server involved. The script in Figure 4.7 is the minimum useful program written in a

shell scripting language. The reason that the command is executed 1000 times is to avoid

measuring the time needed to parse the script.

The test set-up for Figure 4.8 involved wallclock timing of 1000 queries achieved.

The test program is listed in Figure 4.9. The program works by opening a file from a

hierarchy served by resfs which was previously mounted at /mnt/resfs. The file is then

read in a buffer and immediately written out to the program’s standard output channel.

The program then immediately seeks back to the beginning of the file and reads it again,

CHAPTER 4. RESOURCE DISCOVERY 83

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 1 10 100 1000 10000

qu
er

ie
s

pe
r

se
co

nd

update interval (microseconds)

Performance of ResFS using the 9p protocol

"resfs-queries-per-update-interval-seek.data"

Figure 4.8: Maximum number of queries per second performed to a local resfs server,

versus update interval for the update thread in microseconds using seek().

obtaining new values. This is the absolute minimum code one needs for a useful resfs

reader without resorting to writing it in assembly language.

For pure CPU servers, where the cat binary is fetched from a remote computer, the

timing was around 34 seconds with very little deviation, this means resfs was able to serve

292 requests per second. The bottleneck in this case was the network connection, which

became saturated from fetching the 20K of the cat binary being read from the file server

over and over. It made virtually no difference what sleeptime was for the update thread.

Performance data is summarized in Table 4.1. The difference between a single and

multiple walks was the amount of ’walk-ing’ that needed to be done to access the file.

Each walk message is a 9p request, and in the case of /mnt/resfs/load there are 6 of

them, with ’load’ there is only one.

On the other hand, it was possible to simulate in excess of a thousand nodes registering

per aggregate without a significant decrease in speed. The 9P protocol has been tested

CHAPTER 4. RESOURCE DISCOVERY 84

#include <u.h>

#include <libc.h>

void

main(int, char *)

{

int i, fd, n;

char buf[1024];

fd = open("/mnt/resfs/plan9/sexpr", OREAD);

if(fd < 0)

sysfatal("can not open resfs file: %r");

for(i = 0; i < 1000; i++) {

while((n = read(fd, buf, 1024)) > 0)

write(1, buf, n);

seek(fd, 0, 0);

}

}

Figure 4.9: Test program for evaluating synthetic file system performance

FS type Connection type Update interval Walltime (10000q) Q/s

fossil single walk 1µs 19.0s 526 q/s

fossil multiple walks 1µs 20.6s 485 q/s

ramfs single walk 1µs 17.7s 565 q/s

ramfs multiple walks 1µs 19.4s 515 q/s

Table 4.1: Queries per second for various types of resource access.

successfully on thousands of nodes [34] and shouldn’t be a significant obstruction to

scalability. Fine-grained locking, directory traversal optimizations and faster data-to-file

and file-to-data conversion routines should also aid in performance improvements.

In the future resfs will move to the lock-less Plan 9 threading library [9] which I

discovered too late to to be able to successfully convert resfs to it in sufficient time in

order to include it here. The new model simplifies programming even further enabling

threads to synchronize via messages sent on channels.

CHAPTER 4. RESOURCE DISCOVERY 85

4.7 Summary

This chapter introduced resfs, a resource discovery system created for and used in 9grid.

This chapter discussed the tools already existing in Plan 9 to provide similar features in

the case of a single installation and how they are expanded and integrated with resfs into

a tool useful for the vastly distributed resources utilized in grid computing environments.

Resfs is created with simplicity in mind and this chapter justifies the choices made with

regards to the data types used, connection methods and caching policies. It also discusses

the main features built into resfs and how they can be used to program the output data

it provides into a personalized view of the grid’s resources.

The chapter also described the implementation of resfs in the C language using pro-

gramming tools available on the Plan 9 operating system. It also provided performance

measurements and evaluation of resfs.

Chapter 5

Summary and Future Work

86

CHAPTER 5. SUMMARY AND FUTURE WORK 87

5.1 Summary

This thesis described a set of tools created to aid the building and management of grid

computing environments based on the Plan 9 from Bell Labs operating system. They pro-

vide features required to support large scale distributed and cross-administrative domain

grid computing.

Chapter 1 introduced this thesis and the topics of grid computing it covers. It defined

the terminology used throughout the thesis and discussed the major motivation behind the

work, which is to facilitate the creation of simple and easy to use environments connecting

together physically separated computers and enabling resource sharing between individuals

and organizations. Chapter 1 also gave a historical overview of the developments in the

field of distributed computing which lead to the creation of the grid computing paradigm.

On the software side the chapter examined other solutions that allow resource sharing on a

large scale and compared the goals of such projects with the goal of 9grid, the distributed

environment build around the Plan 9 operating system. The chapter also outlined the list

of contributions this thesis strives to accomplish.

Chapter 2 introduced the Plan 9 from Bell Labs operating system and the distributed

computing features it provides. It gave a historical perspective of the OS and how design

decisions affected features such as security, authentication or remote service access. It

introduced the concept of private namespaces and gave examples of how private names-

paces help in securing the Plan 9 environment. The chapter also discussed the single

sign-on authentication agent factotum and its role in providing seamless authentication

in a distributed environment. The chapter also described 9P, the communication proto-

col on which all Plan 9 services are based, both local and remote and discussed some

additions to the Plan 9 operating system to help its adoption in grid computing, such as

a new authentication mechanism that crosses administrative domains and a groupware

communication service, called chatfs.

Chapter 3 gave a description of the Plan 9 kernel device devmon used in 9grid to

present system monitoring information as a network-accessible file hierarchy. The chapter

CHAPTER 5. SUMMARY AND FUTURE WORK 88

detailed the design and implementation of devmon, the control messages it accepts and

the methods for disseminating information that it uses and examined at the performance

of devmon and how it may fare in a large cluster or grid environment. Devmon was also

compared with other system monitoring software solutions. Chapter 3 also examined how

devmon interacts with the hardware monitoring device Winbond W83627THF, which is

found on the University of Calgary 9grid computers and used to monitor the cpu fan

speeds and temperature sensors on Pentium IV motherboards.

Chapter 4 introduced resfs, a resource discovery system created for and used in 9grid.

It discussed the tools already existing in Plan 9 to provide similar features in the case

of a single installation and how they are expanded and integrated with resfs into a tool

useful for the vastly distributed resources utilized in grid computing environments. It also

discusses the main features built into resfs and how they can be used to program the

output data it provides into a personalized view of the grid’s resources. The chapter

also described the implementation of resfs in the C language using programming tools

available on the Plan 9 operating system. It also provided performance measurements

and evaluation of resfs.

5.2 The future of 9grid

Using Plan 9 requires a departure from the familiar set of UNIX paradigms, but with

its radical design it facilitates network computing at a level other systems are unable to

achieve.

Several obstacles to Plan 9’s widespread adoption have hindered its growth in the

past. It had a closed-source development model for the first ten years of its existence and

some prohibitive restrictions in its initial open source license. These issues have now been

resolved so there is no reason why the research community shouldn’t investigate this OS

as a possible solution for building computational grids.

Although Plan 9 was designed to work in a single administrative domain, the simplicity,

CHAPTER 5. SUMMARY AND FUTURE WORK 89

clarity and generality of its model allow it to be extended to the inter-organizational world

of grid computing. This is easier than adapting a set of systems originally created for a

timeshared environment.

9grid shouldn’t be looked at as a replacement for grid toolkits, instead it should

be examined in its native environment and its design decisions should be taken into

consideration when building future grids. 9grid proponents would like to see environments

connecting together around a unified lightweight protocol such as 9P and the ability to

simplify the creation of grid services to the level of Plan 9, where to create a grid service

one only needs to export the name space in which it presents its files. I believe this will

create a simpler and more secure grid computing environment.

9grid and related tools should be thought of as an attempt to simplify grids. To reduce

the bloat of legacy systems and connect resources in a manner obvious to the user. It

is important to simplify grid environments by extending tools the user is already familiar

with, instead of introducing a new set of commands which supposedly “do everything

right”. Today’s UNIX systems come with a host of commands which do the same thing

but over slightly different communication channels. Example of that is copying files. There

are at least three different “simple” programs for copying files: cp, rcp and scp. The

first one works at the computer level, copying files between locally mounted partitions.

The second one works by copying files across networks between computers running the

r* dæmons. Scp also works across the network, but transports the data securely, using

encryption. Each has a set of options incompatible with the other two. Each one has to

exist on every UNIX system lest it becomes unusable.

In comparison, the Plan 9 operating system offers only one command, cp, which

simply creates a copy of a file. It doesn’t require knowledge of whether the source or

the destination are local or a network away because all communication peculiarities are

handled by the mount drivers and the 9P protocol.

CHAPTER 5. SUMMARY AND FUTURE WORK 90

5.3 Future Work

There are many ways in which the 9grid environment can be extended. Listed below are

the ones considered more important.

The most important change being considered for the future of ResFS lies with scal-

ability. Large scale centralized resource monitoring quickly reaches limits imposed by

network bandwidth and latency. Other systems such as SuperMon have determined that

the frequency of data acquisition is inversely proportional to the number of nodes being

monitored [36]. While ResFS is able to access a single data point on a large number of

machines simultaneously without incurring the penalty of transferring all other data, it

will not perform so well when queried about all data from all nodes, mainly because the

network connection is the first thing to get saturated.

A solution to this problem could be an event-driven monitoring model, in which nodes

report when information changes and not when they’re queried. Thus most events could

be monitored infrequently, say 0.1Hz for a load average, while frequent events such as

interrupt counts can be queried with a fine-grained minimum frequency, say 100Hz. This

frees up network resources from the main monitor and gives the ability to fine-tune the

node monitoring hardware to optimize it for a specific environment.

Workflow management is also important in grid environments. Due to the massive

constraints imposed by network bandwidth and latency 9grid will not be able to simply

“bring all necessary services to the terminal” by connecting to them remotely. Instead, the

data needs to be moved closer to the computational resource, with the results collected at a

storage resource for later retrieval. This is a worst-case scenario, but it’s not inconceivable.

The sum of all those operations is called a Workflow and the program that arranges

and organizes them is called a workflow manager or workflow scheduler. Currently a large

part of all workflow is being managed by the person who submits the jobs whether directly,

by copying data and results around before and after the job’s completion, or indirectly,

by adding the workflow to the job on a per-job basis. A difficult to optimize task that

requires lots of resources.

CHAPTER 5. SUMMARY AND FUTURE WORK 91

UNIX systems have an ingenious device that implements workflow management in such

an elegant and simple manner that it has become an indispensable part of the system,

and one that is being used by everybody without a prerequisite training: the UNIX pipe.

One of the more revolutionary results that came out of UNIX pipes is the toolkit

approach to OS design. Building complex systems out of simple, small tools that do

one thing but do it well. This technique has been all but forgotten, seeing as how all

grid middleware toolkits are built from large, monolithic components interacting through

poorly designed, complex protocols. That complexity increases as new functionality is

added atop the middleware components. The opposition to exploring new techniques

because the current ones “work already” also stifles research in the area. The question is

how to achieve the simplicity of the UNIX pipe in a networked environment with the same

elegance. The answer is a Workflow Scheduler that integrates grid services seamlessly

without being too complex to operate by the average user, based on communicating data

between services by reading and writing to files imported over networks.

Processes and system information are increasingly being migrated towards /proc on

UNIX and Linux systems. This allows for simpler resource monitoring and management

tools to be written, primarily because now they can utilize a simple file-based interface

instead of having to be written as kernel modules, or worse, be compiled into the kernel.

Nowadays a program needs only to open a file, read it and parse the information to have a

complete view of the system. This could be a difficult task all by itself, for example data

format in /proc changes very frequently. The difficult task is extending the paradigm

across the single system architecture.

A distributed /proc therefore includes a method for combining information from sev-

eral systems together in a hierarchical name space. It will allow tools to control processes

running on several computers at the same time, preferably without modification.

The most important difficulty lies with the fact that all nodes have their own localized

process id space and each new process’ id number is chosen by the kernel at runtime.

It is a daunting task to try and synchronize all the different pid spaces on a network

CHAPTER 5. SUMMARY AND FUTURE WORK 92

where nodes can number in the thousands, but there may be a solution to this problem

by appending node membership information to the process’ name.

Authentication in grids is a problem that still hasn’t found a simple and elegant non-

centralized solution. I discussed briefly what may be required to extend the Plan 9 au-

thentication model to work across administrative domains [52], however we still haven’t

been able to complete the work for it.

Currently the 9P protocol, the Plan 9 operating system and 9grid do not provide any

means of data caching. In other operating systems and grid toolkits caching policy is

either unimplemented or is global, i.e., affecting all users at the same time. 9grid, with its

private name spaces and the 9P protocol is able to provide a solution to this by extending

caching policy through the mount devices on a per-user, user-controllable basis. The

net effect is that data caching will be chosen to be the most appropriate for the current

application instead of being global for all jobs.

Appendix A

Source Code Listings

93

APPENDIX A. SOURCE CODE LISTINGS 94

A.1 devmon -- hardware and OS monitoring tool

A.1.1 devmon.c – Kernel Device Driver Source
#include "u.h"

#include "../port/lib.h"

#include "mem.h"

#include "dat.h"

5 #include "fns.h"

#include "io.h"

#include "../port/error.h"

enum {

10 Qmondir,

Qmonctl,

Qmondata,

Qtemp,

Qfans,

15 };

static Dirtab mondir[] = {

".", {Qmondir, 0, QTDIR}, 0, 0555,

"monctl", {Qmonctl, 0, QTFILE}, 0, 0664,

20 "mondata", {Qmondata, 0, QTFILE}, 0, 0444,

"temp", {Qtemp, 0, QTFILE}, 0, 0444,

"fans", {Qfans, 0, QTFILE}, 0, 0444,

};

25

enum

{

CMcs = 0,

CMintr,

30 CMsyscall,

CMpfault,

CMtlbfault,

CMtlbpurge,

CMload,

35 CMinidle,

CMinintr,

CMtemp1,

CMtemp2,

CMtemp3,

40 CMfan1,

CMfan2,

CMfan3,

CMlast,

45 /* for devices with the Windbond W83627THF

* hardware monitor:

* http://www.winbond.com.tw/c-winbondhtm/partner/PDFresult.asp?Pname=925

*/

Bank0 = 0,

50 Bank1 = 1,

Bank2 = 2,

Tidx = 0x295, /* index */

Tdata = 0x296, /* data */

55

SysT = 0x27, /* SYSTIN */

Fan1 = 0x28, /* Fan1 */

Fan2 = 0x29, /* Fan2 */

APPENDIX A. SOURCE CODE LISTINGS 95

Fan3 = 0x2a, /* Fan3 */

60

Cr = 0x40, /* Configuration Register */

Isr1 = 0x41,

Isr2 = 0x42,

SmiM1 = 0x43, /* Smi Mask Register 1 */

65 SmiM2 = 0x44,

Fdr1 = 0x47, /* Fan Divisor Register 1 */

Did = 0x49, /* Device ID */

Fdr2 = 0x4b,

BankSel = 0x4e, /* Bank Select Register */

70

CpuTHi = 0x50, /* CPUTIN Temperature Sensor Temp, bits 8:1, Bank 1 */

CpuTLo = 0x51, /* CPUTIN Temperature Sensor Temp, bit 0, Bank 1 */

VTHi = 0x50, /* CPUTIN Temperature Sensor Temp, bits 8:1, Bank 1 */

VTLo = 0x51, /* CPUTIN Temperature Sensor Temp, bit 0, Bank 1 */

75

};

static Cmdtab monctlmsg[] =

{

80 CMcs, "context", 2,

CMintr, "interrupts", 2,

CMsyscall, "syscalls", 2,

CMpfault, "pfault", 2,

CMtlbfault, "tlbfault", 2,

85 CMtlbpurge, "tlbpurge", 2,

CMload, "load", 2,

CMinidle, "inidle", 2,

CMinintr, "inintr", 2,

CMtemp1, "systemp", 2,

90 CMtemp2, "cputemp", 2,

CMtemp3, "vtemp", 2,

CMfan1, "mbfan", 2,

CMfan2, "cpufan", 2,

CMfan3, "pwfan", 2,

95

};

typedef struct {

100 int flags[CMlast];

} Mon;

static Mon mon;

static char output[4096];

105

void

wbw(int reg, uchar val)

{

outb(Tidx, reg);

110 outb(Tdata, val);

}

uchar

wbr(int reg)

115 {

outb(Tidx, reg);

return inb(Tdata);

}

120 void

add(char *a, ...)

{

APPENDIX A. SOURCE CODE LISTINGS 96

va_list arg;

125 va_start(arg, a);

vseprint(output+strlen(output), output+sizeof(output), a, arg);

va_end(arg);

}

130 int

rstr(ulong off, char *buf, ulong n, char *str)

{

int size;

135 size = strlen(str);

if(off >= size)

return 0;

if(off+n > size)

n = size-off;

140 memmove(buf, str+off, n);

return n;

}

void

145 moninit(void)

{

int i;

for(i = 0; i < CMlast; i++) {

150 mon.flags[i] = 1;

}

/* enable the winbond monitor */

wbw(0x40, 0x3);

155 }

Walkqid*

monwalk(Chan* c, Chan *nc, char** name, int nname)

{

160 return devwalk(c, nc, name, nname, mondir, nelem(mondir), devgen);

}

static int

monstat(Chan* c, uchar* dp, int n)

165 {

return devstat(c, dp, n, mondir, nelem(mondir), devgen);

}

static Chan*

170 monopen(Chan *c, int omode)

{

return devopen(c, omode, mondir, nelem(mondir), devgen);

}

175 static void

monclose(Chan*)

{

}

180 static long

monread(Chan *c, void *va, long n, vlong offset)

{

Mach *mp;

int id;

185

output[0] = ’\0’;

APPENDIX A. SOURCE CODE LISTINGS 97

switch((ulong)c->qid.path){

case Qmondir:

190 return devdirread(c, va, n, mondir, nelem(mondir), devgen);

case Qmonctl:

add("(");

for(id = 0; id < CMlast; id++)

add("(%s %s)", monctlmsg[id].cmd, mon.flags[id] ? "true" : "false");

195 add(")");

return rstr(offset, va, n, output);

case Qmondata:

add("(");

200 add("(sysname %s)", sysname);

for(id = 0; id < 32; id++) {

if(active.machs & (1<<id)) {

mp = MACHP(id);

205 add("(");

add("(cpu %d)", id);

if(mon.flags[CMcs])

add("(%s %d)", monctlmsg[CMcs].cmd, mp->cs);

if(mon.flags[CMintr])

210 add("(%s %d)", monctlmsg[CMintr].cmd, mp->intr);

if(mon.flags[CMsyscall])

add("(%s %d)", monctlmsg[CMsyscall].cmd, mp->syscall);

if(mon.flags[CMpfault])

add("(%s %d)", monctlmsg[CMpfault].cmd, mp->pfault);

215 if(mon.flags[CMtlbfault])

add("(%s %d)", monctlmsg[CMtlbfault].cmd, mp->tlbfault);

if(mon.flags[CMtlbpurge])

add("(%s %d)", monctlmsg[CMtlbpurge].cmd, mp->tlbpurge);

if(mon.flags[CMload])

220 add("(%s %d)", monctlmsg[CMload].cmd, mp->load);

if(mon.flags[CMinidle])

add("(%s %d)", monctlmsg[CMinidle].cmd, (mp->perf.avg_inidle*100)/mp->perf.period);

if(mon.flags[CMinintr])

add("(%s %d)", monctlmsg[CMinintr].cmd, (mp->perf.avg_inintr*100)/mp->perf.period);

225

/* no negative values */

if(mon.flags[CMtemp1])

add("(%s %d)", monctlmsg[CMtemp1].cmd, wbr(SysT));

if(mon.flags[CMtemp2]) {

230 wbw(BankSel, (wbr(BankSel) & ~0x7)|(Bank1));

add("(%s %d.%d)", monctlmsg[CMtemp2].cmd, wbr(CpuTHi), (wbr(CpuTLo)>>7)*5);

}

if(mon.flags[CMtemp3]) {

wbw(BankSel, (wbr(BankSel) & ~0x7)|(Bank2));

235 add("(%s %d.%d)", monctlmsg[CMtemp3].cmd, wbr(VTHi), (wbr(VTLo)>>7)*5);

}

/* formula: rpm = 1350000 / (count * divisor) */

/* divisor default is 2 and we’ll leave it that way -- not

240 * too fast, mostly power supply fans

*/

if(mon.flags[CMfan1])

add("(%s %d)", monctlmsg[CMfan1].cmd, 1350000/(wbr(Fan1)*2));

if(mon.flags[CMfan2])

245 add("(%s %d)", monctlmsg[CMfan2].cmd, 1350000/(wbr(Fan2)*2)-2647);

if(mon.flags[CMfan3])

add("(%s %d)", monctlmsg[CMfan3].cmd, 1350000/(wbr(Fan3)*2)-2647);

add(")");

}

250 }

APPENDIX A. SOURCE CODE LISTINGS 98

add(")\n");

return rstr(offset, va, n, output);

case Qtemp:

wbw(BankSel, (wbr(BankSel) & ~0x7)|(Bank1));

255 /* stats.c doesn’t like floats */

add("%d\t%d\n", wbr(CpuTHi), wbr(SysT));

return rstr(offset, va, n, output);

case Qfans:

wbw(BankSel, (wbr(BankSel) & ~0x7)|(Bank1));

260 /* stats.c doesn’t like floats */

add("%d\t%d\t%d\n", 1350000/(wbr(Fan1)*2)-2647,

1350000/(wbr(Fan2)*2)-2647,

1350000/(wbr(Fan3)*2)-2647);

return rstr(offset, va, n, output);

265 default:

break;

}

error(Egreg);

return 0;

270 }

static long

monwrite(Chan *c, void *va, long n, vlong offset)

{

275 char *a, buf[256];

Cmdbuf *cb;

Cmdtab *ct;

USED(offset);

280 if(n >= sizeof(buf))

n = sizeof(buf)-1;

a = va;

strncpy(buf, a, n);

buf[n] = 0;

285

switch((ulong)c->qid.path){

case Qmonctl:

cb = parsecmd(va, n);

if(waserror()){

290 free(cb);

nexterror();

}

ct = lookupcmd(cb, monctlmsg, nelem(monctlmsg));

295

if(ct == nil)

error("unknown command");

if(!strncmp(cb->f[1], "true", 4))

300 mon.flags[ct->index] = 1;

else if(!strncmp(cb->f[1], "false", 5))

mon.flags[ct->index] = 0;

else

error("argument can only be true or false");

305

free(cb);

poperror();

return n; break;

default:

310 error(Egreg);

}

return n;

}

APPENDIX A. SOURCE CODE LISTINGS 99

315 extern Dev mondevtab;

static Chan*

monattach(char *spec)

{

320 return devattach(mondevtab.dc, spec);

}

Dev mondevtab = {

L’’,

325 "mon",

devreset,

moninit,

devshutdown,

330 monattach,

monwalk,

monstat,

monopen,

devcreate,

335 monclose,

monread,

devbread,

monwrite,

devbwrite,

340 devremove,

devwstat,

};

A.2 ResFS -- Resource Discovery

A.2.1 resfs-th.h – header file
enum {

Qroot = 0, /* top level directory */

Qrootbase,

Qctl = Qrootbase,

5 Qcpufreq,

Qcputype,

Qload,

Qmemory,

Qncpu,

10 Qnproc,

Qnusers,

Qobjtype,

Qos,

Qpolicy,

15 Qsexpr,

Qsysname,

Qswap,

Quptime,

Qmax,

20

Qgroupdir, /* group directories */

Qgroupbase,

Qgctl = Qgroupbase,

Qpending,

APPENDIX A. SOURCE CODE LISTINGS 100

25 Qrunning,

Qdone,

PNamelen = 64,

PValuelen = 64,

30 Npolicy = 20,

/* stats-related */

Maxnum=10,

/* /dev/swap */

35 Mem = 0,

Maxmem,

Swap,

Maxswap,

/* /dev/sysstats */

40 Procno = 0,

Context,

Interrupt,

Syscall,

Fault,

45 TLBfault,

TLBpurge,

Load,

Idle,

InIntr,

50 /* /net/ether0/stats */

In = 0,

Out,

Err0,

Stacksize = 8192,

55 Blocksize = 4096, /* a memory page is that many bytes */

Resplen = 8192,

};

60 typedef struct Ramfile Ramfile;

struct Ramfile {

char *data;

int ndata;

};

65

typedef struct FFile FFile;

struct FFile {

ulong qid;

70 ulong perm;

char *path;

char *(*report)(char *, int);

};

75

typedef struct RVal RVal;

struct RVal {

char name[PNamelen];

char value[PValuelen];

80 };

typedef struct Machine Machine;

struct Machine

{

85 char *name;

char *objtype;

int statsfd;

APPENDIX A. SOURCE CODE LISTINGS 101

int cputypefd;

90 int btimefd;

int swapfd;

int procfd;

int etherfd;

int ifstatsfd;

95 int disable;

int ncpu;

int nusers;

int sexpr;

100

vlong freq;

vlong ticks;

long nproc;

105 ulong devswap[4];

ulong devsysstat[10];

ulong prevsysstat[10];

ulong netetherstats[8];

ulong prevetherstats[8];

110 ulong netetherifstats[2];

RVal *policy[Npolicy];

char cputype[16];

115 ulong cpufreq;

char buf[1024];

char *bufp;

char *ebufp;

120

};

/* resfs.c */

125 extern FFile *tab[Qmax];

extern Machine mach;

extern ulong qidgen;

extern RWLock l;

extern int sleeptime;

130 extern int noupdate;

void usage(void);

/* stats.c */

void be2vlong(vlong *, uchar *);

135 int loadbuf(int *);

int readnums(int, ulong *, int);

void initmach(void);

void update(void);

140 /* common.c */

void initresfs(void);

/* policy.c */

RVal *setpol(char *, char *);

145 int addpol(char *, char *);

int freepol(char *);

/* BUG: to be changed once we know

* if there’s a better way

150 */

#define error sysfatal

APPENDIX A. SOURCE CODE LISTINGS 102

A.2.2 common.c – Common Operations
#include <u.h>

#include <libc.h>

#include <thread.h>

#include <fcall.h>

5 #include <9p.h>

#include "resfs-th.h"

/*

10 * TODO: convert the string reporting routines so that we know how far we’ve gone

* Needs a global counter in ctlreport, and each report() to return the length of the

* string it’s written.

*/

15 /* ---- Qctl ---- */

static char *

ctlreport(char *s, int sexp)

{

int i;

20 char *tmp;

tmp = s;

if(sexp)

*tmp++ = ’(’;

25

tab[Qsysname]->report(tmp, sexp);

tmp = s + strlen(s);

*tmp++ = ’ ’;

30 for(i = Qrootbase; i < Qmax; i++) {

if(i == Qctl || i == Qsexpr || i == Qsysname)

continue;

35 tab[i]->report(tmp, sexp);

tmp = s + strlen(s);

*tmp++ = ’ ’;

}

if(sexp)

40 *tmp++ = ’)’;

*tmp = ’\0’;

return s;

45 }

static FFile *

ctlinit(void)

{

50 FFile *file;

file = emalloc9p(sizeof(FFile));

file->perm = 0664;

file->qid = Qctl;

55 file->path = "ctl";

file->report = ctlreport;

return file;

}

60

/* ---- Qcpufreq ---- */

static char *

APPENDIX A. SOURCE CODE LISTINGS 103

cpufreqreport(char *s, int sexp)

{

65 if(sexp)

snprint(s, Resplen, "(cpufreq %uld)", mach.cpufreq);

else

snprint(s, Resplen, "cpufreq=%uld", mach.cpufreq);

70 return s;

}

static FFile *

cpufreqinit(void)

{

75 FFile *file;

file = emalloc9p(sizeof(FFile));

file->perm = 0444;

file->qid = Qcpufreq;

80 file->path = "cpufreq";

file->report = cpufreqreport;

return file;

}

85

/* ---- Qcputype ---- */

static char *

cputypereport(char *s, int sexp)

90 {

if(sexp)

snprint(s, Resplen, "(cputype %s)", mach.cputype);

else

snprint(s, Resplen, "cputype=%s", mach.cputype);

95

return s;

}

static FFile *

cputypeinit(void)

100 {

FFile *file;

file = emalloc9p(sizeof(FFile));

file->perm = 0444;

105 file->qid = Qcputype;

file->path = "cputype";

file->report = cputypereport;

return file;

110 }

/* ---- Qload ---- */

static char *

115 loadreport(char *s, int sexp)

{

if(sexp)

snprint(s, Resplen, "(load %uld)", mach.devsysstat[Load]*mach.ncpu);

else

120 snprint(s, Resplen, "load=%uld", mach.devsysstat[Load]*mach.ncpu);

return s;

}

125 static FFile *

loadinit(void)

APPENDIX A. SOURCE CODE LISTINGS 104

{

FFile *file;

130 file = emalloc9p(sizeof(FFile));

file->perm = 0444;

file->qid = Qload;

file->path = "load";

file->report = loadreport;

135

return file;

}

/* ---- Qmemory ---- */

140 static char *

memreport(char *s, int sexp)

{

if(sexp)

snprint(s, Resplen, "(memused %uld) (memtotal %uld)",

145 mach.devswap[Mem]*Blocksize,

mach.devswap[Maxmem]*Blocksize);

else

snprint(s, Resplen, "memused=%uld memtotal=%uld",

mach.devswap[Mem]*Blocksize,

150 mach.devswap[Maxmem]*Blocksize);

return s;

}

static FFile *

155 meminit(void)

{

FFile *file;

file = emalloc9p(sizeof(FFile));

160 file->perm = 0444;

file->qid = Qmemory;

file->path = "memory";

file->report = memreport;

165 return file;

}

/* ---- Qncpu ---- */

static char *

170 ncpureport(char *s, int sexp)

{

if(sexp)

snprint(s, Resplen, "(ncpu %d)", mach.ncpu);

else

175 snprint(s, Resplen, "ncpu=%d", mach.ncpu);

return s;

}

static FFile *

180 ncpuinit(void)

{

FFile *file;

file = emalloc9p(sizeof(FFile));

185 file->perm = 0444;

file->qid = Qncpu;

file->path = "ncpu";

file->report = ncpureport;

190 return file;

APPENDIX A. SOURCE CODE LISTINGS 105

}

/* ---- Qnproc ---- */

static char *

195 nprocreport(char *s, int sexp)

{

if(sexp)

snprint(s, Resplen, "(nproc %ld)", mach.nproc);

else

200 snprint(s, Resplen, "nproc=%ld", mach.nproc);

return s;

}

static FFile *

205 nprocinit(void)

{

FFile *file;

file = emalloc9p(sizeof(FFile));

210 file->perm = 0444;

file->qid = Qctl;

file->path = "nproc";

file->report = nprocreport;

215 return file;

}

/* ---- Qnusers ---- */

static char *

220 nusersreport(char *s, int sexp)

{

if(sexp)

snprint(s, Resplen, "(nusers %d)", mach.nusers);

else

225 snprint(s, Resplen, "nusers=%d", mach.nusers);

return s;

}

static FFile *

230 nusersinit(void)

{

FFile *file;

file = emalloc9p(sizeof(FFile));

235 file->perm = 0444;

file->qid = Qnusers;

file->path = "nusers";

file->report = nusersreport;

240 return file;

}

/* ---- Qobjtype ---- */

static char *

245 objtypereport(char *s, int sexp)

{

if(sexp)

snprint(s, Resplen, "(objtype %s)", mach.objtype);

else

250 snprint(s, Resplen, "objtype=%s", mach.objtype);

return s;

}

static FFile *

APPENDIX A. SOURCE CODE LISTINGS 106

255 objtypeinit(void)

{

FFile *file;

file = emalloc9p(sizeof(FFile));

260 file->perm = 0444;

file->qid = Qobjtype;

file->path = "objtype";

file->report = objtypereport;

265 return file;

}

/* ---- Qos ---- */

static char *

270 osreport(char *s, int sexp)

{

if(sexp)

sprint(s, "(os Plan9)");

else

275 sprint(s, "os=Plan9");

return s;

}

static FFile *

280 osinit(void)

{

FFile *file;

file = emalloc9p(sizeof(FFile));

285 file->perm = 0444;

file->qid = Qos;

file->path = "os";

file->report = osreport;

290 return file;

}

/* ---- Qpolicy ---- */

295 static char *

policyreport(char *s, int sexp)

{

int i;

char *tmp = s;

300

for(i = 0; i < Npolicy; i++) {

if(mach.policy[i] == nil)

continue;

305 if(sexp) {

tmp += sprint(tmp, "(%s %s) ", mach.policy[i]->name, mach.policy[i]->value);

} else {

tmp += sprint(tmp, "%s=%s ", mach.policy[i]->name, mach.policy[i]->value);

}

310

}

return s;

}

315 static FFile *

policyinit(void)

{

FFile *file;

APPENDIX A. SOURCE CODE LISTINGS 107

320 file = emalloc9p(sizeof(FFile));

file->perm = 0664;

file->qid = Qpolicy;

file->path = "policy";

file->report = policyreport;

325

return file;

}

/* ---- Qsexpr ---- */

330 static char *

sexprreport(char *s, int sexp)

{

USED(sexp);

ctlreport(s, 1);

335 return s;

}

static FFile *

sexprinit(void)

{

340 FFile *file;

file = emalloc9p(sizeof(FFile));

file->perm = 0444;

file->qid = Qsexpr;

345 file->path = "sexpr";

file->report = sexprreport;

return file;

}

350

/* ---- Qsysname ---- */

static char *

sysreport(char *s, int sexp)

355 {

if(sexp)

sprint(s, "(sys %s)", mach.name);

else

sprint(s, "sys=%s", mach.name);

360

return s;

}

static FFile *

sysinit(void)

365 {

FFile *file;

file = emalloc9p(sizeof(FFile));

file->perm = 0444;

370 file->qid = Qsysname;

file->path = "sysname";

file->report = sysreport;

return file;

375 }

/* ---- Qswap ---- */

static char *

swapreport(char *s, int sexp)

380 {

if(sexp)

snprint(s, Resplen, "(swapused %uld) (swaptotal %uld)",

APPENDIX A. SOURCE CODE LISTINGS 108

mach.devswap[Swap]*Blocksize,

mach.devswap[Maxswap]*Blocksize);

385 else

snprint(s, Resplen, "swapused=%uld swaptotal=%uld",

mach.devswap[Swap]*Blocksize,

mach.devswap[Maxswap]*Blocksize);

390 return s;

}

static FFile *

swapinit(void)

{

395 FFile *file;

file = emalloc9p(sizeof(FFile));

file->perm = 0444;

file->qid = Qswap;

400 file->path = "swap";

file->report = swapreport;

return file;

}

405

/* ---- Quptime ---- */

static char *

upreport(char *s, int sexp)

{

410 if(sexp)

snprint(s, Resplen, "(up %lldd:%2.2lldh:%2.2lldm:%2.2llds)",

(mach.ticks/mach.freq)/86400,

((mach.ticks/mach.freq)%86400)/3600,

((mach.ticks/mach.freq)%3600)/60,

415 ((mach.ticks/mach.freq)%60));

else

snprint(s, Resplen, "up=%lldd:%2.2lldh:%2.2lldm:%2.2llds",

(mach.ticks/mach.freq)/86400,

((mach.ticks/mach.freq)%86400)/3600,

420 ((mach.ticks/mach.freq)%3600)/60,

((mach.ticks/mach.freq)%60));

return s;

}

static FFile *

425 upinit(void)

{

FFile *file;

file = emalloc9p(sizeof(FFile));

430 file->perm = 0664;

file->qid = Qctl;

file->path = "uptime";

file->report = upreport;

435 return file;

}

void

440 initresfs(void)

{

tab[Qctl] = ctlinit();

tab[Qcpufreq] = cpufreqinit();

tab[Qcputype] = cputypeinit();

445 tab[Qload] = loadinit();

tab[Qmemory] = meminit();

APPENDIX A. SOURCE CODE LISTINGS 109

tab[Qncpu] = ncpuinit();

tab[Qnproc] = nprocinit();

tab[Qnusers] = nusersinit();

450 tab[Qobjtype] = objtypeinit();

tab[Qos] = osinit();

tab[Qpolicy] = policyinit(); /* to be added later */

tab[Qsexpr] = sexprinit(); /* is called through Qctl */

tab[Qsysname] = sysinit();

455 tab[Qswap] = swapinit();

tab[Quptime] = upinit();

}

A.2.3 policy.c – Policy Implementation
/*

* helper functions for policy reporting

*

*/

5 #include <u.h>

#include <libc.h>

#include <thread.h>

#include <fcall.h>

#include <9p.h>

10 #include <ctype.h>

#include "resfs-th.h"

15 static RVal *

findpol(char *name)

{

int i;

20 if(name == nil)

return nil;

for(i = 0; i < Npolicy; i++) {

if(mach.policy[i] == nil)

25 continue;

if(!strncmp(mach.policy[i]->name, name, PNamelen))

return mach.policy[i];

}

30 return nil;

}

RVal *

setpol(char *name, char *value)

35 {

RVal *r;

r = findpol(name);

if(r == nil)

40 return nil;

strncpy(r->value, value, PValuelen);

return r;

}

45

int

addpol(char *name, char *value)

{

APPENDIX A. SOURCE CODE LISTINGS 110

int i;

50 RVal *r;

for(i = 0; i < Npolicy; i++)

if(mach.policy[i] == nil)

break;

55

if(i == Npolicy)

return -1;

r = emalloc9p(sizeof(RVal));

60 if(r == nil)

return -1;

strncpy(r->name, name, PNamelen);

strncpy(r->value, value, PValuelen);

65

mach.policy[i] = r;

return i;

}

70

int

freepol(char *name)

{

int i;

75

for(i = 0; i < Npolicy; i++) {

if(mach.policy[i] == nil)

continue;

if(strncmp(mach.policy[i]->name, name, PNamelen) == 0)

80 break;

}

if(i == Npolicy)

return -1;

85 free(mach.policy[i]);

mach.policy[i] = nil;

return i;

}

A.2.4 resfs-th.c – Main Threaded Code
#include <u.h>

#include <libc.h>

#include <thread.h>

#include <fcall.h>

5 #include <9p.h>

#include <ctype.h>

#include <bio.h>

#include <ndb.h>

10 #include "resfs-th.h"

FFile *tab[Qmax];

Tree *restree;

RWLock l;

15 int sleeptime = 1000;

int debug;

int noupdate; /* do not update info periodically */

int nolisten; /* do not listen on 18000 */

APPENDIX A. SOURCE CODE LISTINGS 111

int nopost; /* do not post to $resourcefs */

20 Machine mach;

void

usage(void)

{

25 fprint(2, "usage: resfs [-qpu] [-s service] [-t sleeptime]\n");

sysfatal("usage");

}

void

30 fscreate(Req *r)

{

File *f;

int t;

35 t = (int)r->fid->file->aux;

if(t <= Qmax) {

respond(r, "creating an already existing file?");

return;

40 }

if(t == Qroot) {

if(f = createfile(r->fid->file, r->ifcall.name, r->fid->uid, r->ifcall.perm, nil)){

// rf = emalloc9p(sizeof *rf);

45 f->aux = (void *)(Qgroupdir);

r->fid->file = f;

r->ofcall.qid = f->qid;

respond(r, nil);

return;

50 }

}

respond(r, "could not create file");

}

55 void

fsread(Req *r)

{

int t;

char tmp[Resplen];

60

t = (int)r->fid->file->aux;

if(t > Qmax)

respond(r, "read from unknown file");

65

if(tab[t]->report != nil) {

rlock(&l);

tab[t]->report(tmp, mach.sexpr);

*(strchr(tmp, ’\0’)) = ’\n’;

70 *(strchr(tmp, ’\n’)+1) = ’\0’;

runlock(&l);

}

readstr(r, tmp);

respond(r, nil);

75 }

void

fswrite(Req *r)

{

80 char tmp[Resplen];

char *args[3];

int t;

APPENDIX A. SOURCE CODE LISTINGS 112

t = (int)r->fid->file->aux;

85

switch(t){

default:

if(t > Qmax)

respond(r, "write to unknown file");

90 else {

sprint(tmp, "write to %s not supported", tab[t]->path);

respond(r, tmp);

}

return;

95 case Qpolicy:

if(r->ifcall.count >= sizeof tmp){

respond(r, "write too long");

return;

}

100 memmove(tmp, r->ifcall.data, r->ifcall.count);

tmp[r->ifcall.count] = ’\0’;

t = tokenize(tmp, args, 3);

if(t > 3) {

105 respond(r, "too many arguments (expected 3)");

return;

}

if(cistrncmp(args[0], "add", 3) == 0) {

110 if(t != 3) {

respond(r, "not enough arguments for ’add’");

return;

}

if(addpol(args[1], args[2]) < 0) {

115 sprint(tmp, "%s: cannot add policy", args[1]);

respond(r, tmp);

return;

}

} else if(cistrncmp(args[0], "set", 3) == 0) {

120 if(t != 3) {

respond(r, "not enough arguments for ’set’");

return;

}

if(setpol(args[1], args[2]) == nil) {

125 sprint(tmp, "%s: policy not found", args[1]);

respond(r, tmp);

return;

}

} else if(cistrncmp(args[0], "del", 3) == 0) {

130 if(t != 2) {

respond(r, "too many arguments for ’del’");

return;

}

if(freepol(args[1]) < 0) {

135 sprint(tmp, "%s: policy not found", args[1]);

respond(r, tmp);

return;

}

} else {

140 respond(r, "unknown command");

return;

}

break;

145 case Qctl:

if(r->ifcall.count >= sizeof tmp){

APPENDIX A. SOURCE CODE LISTINGS 113

respond(r, "write too long");

return;

}

150 memmove(tmp, r->ifcall.data, r->ifcall.count);

tmp[r->ifcall.count] = ’\0’;

t = tokenize(tmp, args, 3);

if(t > 3) {

155 respond(r, "too many arguments (expected 3)");

return;

}

if(cistrncmp(args[0], "set", 2) == 0) {

160 if(t != 2) {

respond(r, "not enough arguments for ’set’");

return;

}

if(cistrncmp(args[1], "sexpr", 5) == 0) {

165 mach.sexpr = 1;

} else if(cistrncmp(args[1], "nosexpr", 5) == 0) {

mach.sexpr = 0;

} else {

sprint(tmp, "unknown argument: %s", args[1]);

170 respond(r, tmp);

return;

}

}

break;

175 }

r->ofcall.count = r->ifcall.count;

respond(r, nil);

return;

180 }

void

fscleanup(Srv *s)

{

185 USED(s);

exits(nil);

}

190 Srv fs=

{

.read = fsread,

.write = fswrite,

.create = fscreate,

195 };

/* Find out where aggregate is (resourcefs in ndb)

* and post a file descriptor there.

*/

200 void

callagg(void)

{

Srv *s;

int fd;

205

switch(rfork(RFPROC|RFMEM|RFNOWAIT)){

case -1:

sysfatal("rfork: %r");

default:

210 return;

APPENDIX A. SOURCE CODE LISTINGS 114

case 0:

break;

}

215 fd = dial(netmkaddr("$resourcefs", 0, "18001"), 0, 0, 0);

if(fd < 0)

exits("dial: %r\n");

print("dialed resfs...\n");

220 s = emalloc9p(sizeof *s);

*s = fs;

s->infd = s->outfd = fd;

srv(s);

free(s);

225 exits(nil);

}

void

listensrv(void)

230 {

Srv *s;

char adir[NETPATHLEN], ldir[NETPATHLEN];

int acfd, dfd, lcfd;

235 switch(rfork(RFPROC|RFMEM|RFNOWAIT)){

case -1:

sysfatal("rfork: %r");

default:

return;

240 case 0:

break;

}

acfd = announce("tcp!*!18000", adir);

245 if(acfd < 0)

sysfatal("announce: %r");

for(;;){

lcfd = listen(adir, ldir);

250 if(lcfd < 0)

sysfatal("listen: %r");

switch(rfork(RFPROC | RFMEM | RFNOWAIT)){

case -1:

255 fprint(2, "fork listen: %r");

continue;

default:

continue;

case 0:

260 break;

}

dfd = accept(lcfd, ldir);

if(dfd < 0)

sysfatal("accept: %r");

265

s = emalloc9p(sizeof *s);

*s = fs;

s->infd = s->outfd = dfd;

srv(s);

270 free(s);

_exits(nil);

}

}

APPENDIX A. SOURCE CODE LISTINGS 115

275 void

main(int argc, char **argv)

{

File *f, *rootf;

int i;

280 char *sysn;

char *service = "resfs";

ARGBEGIN{

case ’D’:

285 chatty9p++;

break;

case ’d’:

debug++;

break;

290 case ’s’:

service = EARGF(usage());

break;

case ’p’:

nopost++;

295 break;

case ’u’:

noupdate++;

break;

case ’q’:

300 nolisten++;

break;

case ’t’:

sleeptime = atoi(EARGF(usage()));

break;

305 default:

usage();

}ARGEND

if(argc > 0)

310 usage();

USED(service);

sysn = sysname();

315 if(! sysn)

sysn = "unknown";

initmach();

initresfs();

320

restree = fs.tree = alloctree(getuser(), getuser(), DMDIR|0555, nil);

incref(restree->root);

rootf = createfile(restree->root, sysn, getuser(), DMDIR|0775, nil);

if(rootf == nil)

325 sysfatal("creating %s: %r", sysn);

rootf->aux = (void *)Qroot;

for(i = Qrootbase; i < Qmax; i++) {

f = createfile(rootf, tab[i]->path, getuser(), tab[i]->perm, nil);

330 if(f == nil)

sysfatal("creating %s: %r", tab[i]->path);

f->aux = (void *)i;

}

decref(restree->root);

335

if(!nolisten)

listensrv();

APPENDIX A. SOURCE CODE LISTINGS 116

if(!nopost)

340 callagg();

update();

345 // postmountsrv(&fs, service, nil, 0);

exits(nil);

}

A.2.5 stats-th.c – Statistics and Monitoring
/*

* helper functions for stats collection

*

* lifted from stats(1) mostly

5 */

#include <u.h>

#include <libc.h>

#include <thread.h>

#include <fcall.h>

10 #include <9p.h>

#include <ctype.h>

#include "resfs-th.h"

15 static uvlong order = 0x0001020304050607ULL;

void

be2vlong(vlong *to, uchar *f)

{

20 uchar *t, *o;

int i;

t = (uchar*)to;

o = (uchar*)ℴ

25 for(i = 0; i < 8; i++)

t[o[i]] = f[i];

}

int

30 loadbuf(int *fd)

{

int n;

if(*fd < 0)

35 return 0;

seek(*fd, 0, 0);

n = read(*fd, mach.buf, sizeof mach.buf);

if(n <= 0){

close(*fd);

40 *fd = -1;

return 0;

}

mach.bufp = mach.buf;

mach.ebufp = mach.buf+n;

45 return 1;

}

int

APPENDIX A. SOURCE CODE LISTINGS 117

readnums(int n, ulong *a, int spanlines)

50 {

int i;

char *p, *ep;

if(spanlines)

55 ep = mach.ebufp;

else

for(ep=mach.bufp; ep<mach.ebufp; ep++)

if(*ep == ’\n’)

break;

60 p = mach.bufp;

for(i=0; i<n && p<ep; i++){

while(p<ep && !isdigit(*p) && *p!=’-’)

p++;

if(p == ep)

65 break;

a[i] = strtoul(p, &p, 10);

}

if(ep < mach.ebufp)

ep++;

70 mach.bufp = ep;

return i == n;

}

void

75 initmach(void)

{

char buf[256];

mach.name = sysname();

80 if(mach.name == nil)

mach.name = "unknown";

mach.objtype = getenv("objtype");

if(mach.objtype == nil)

mach.objtype = "unknown";

85

snprint(buf, sizeof buf, "#c/swap");

mach.swapfd = open(buf, OREAD);

memset(mach.devswap, 0, sizeof mach.devswap);

90 snprint(buf, sizeof buf, "#c/sysstat");

mach.statsfd = open(buf, OREAD);

memset(mach.devsysstat, 0, sizeof mach.devsysstat);

snprint(buf, sizeof buf, "#P/cputype");

95 mach.cputypefd = open(buf, OREAD);

memset(mach.cputype, 0, sizeof mach.cputype);

mach.cpufreq = 0;

/* cpufreq can change without rebooting on laptops

100 * #P won’t pick up the change though.

*/

if(loadbuf(&mach.cputypefd)) {

mach.cpufreq = atoi(strrchr(mach.buf, ’ ’)+1);

*(strchr(mach.buf, ’ ’)) = ’\0’;

105 strncpy(mach.cputype, mach.buf, sizeof mach.cputype - 1);

}

snprint(buf, sizeof buf, "/proc");

mach.procfd = open(buf, OREAD);

110 mach.nproc = 0;

snprint(buf, sizeof buf, "#c/bintime");

APPENDIX A. SOURCE CODE LISTINGS 118

mach.btimefd = open(buf, OREAD);

mach.freq = 0;

115 mach.ticks = 0;

mach.ncpu = 0;

mach.nusers = 0;

120 mach.sexpr = 0;

addpol("maxproc", "1000");

addpol("maxnode", "5");

addpol("maxjob", "50");

125 addpol("maxwalltime", "inf");

addpol("maxmem", "5");

addpol("maxload", "10000");

}

130

void

update(void)

{

ulong a[Maxnum];

135 char b[24];

Dir *dir;

int n, i;

vlong t;

140 switch(rfork(RFPROC|RFMEM|RFNOWAIT)){

case -1:

sysfatal("rfork: %r");

default:

return;

145 case 0:

break;

}

for(;;) {

150 wlock(&l);

if(loadbuf(&mach.swapfd) && readnums(nelem(mach.devswap), a, 0))

memmove(mach.devswap, a, sizeof mach.devswap);

else

155 mach.devswap[Maxmem] = mach.devswap[Maxswap] = 100;

if(loadbuf(&mach.statsfd)){

memset(mach.devsysstat, 0, sizeof mach.devsysstat);

for(n=0; readnums(nelem(mach.devsysstat), a, 0); n++)

160 for(i=0; i<nelem(mach.devsysstat); i++)

mach.devsysstat[i] += a[i];

mach.ncpu = n;

}

165

if(read(mach.btimefd, b, 24) == 24) {

be2vlong(&t, (uchar*)b+8);

mach.ticks = t;

be2vlong(&t, (uchar*)b+16);

170 mach.freq = t;

}

seek(mach.procfd, 0, 0);

mach.nproc = dirreadall(mach.procfd, &dir);

175

wunlock(&l);

APPENDIX A. SOURCE CODE LISTINGS 119

/* clean up */

free(dir);

180

if(noupdate)

exits(nil);

sleep(sleeptime);

185 }

}

A.3 AggrFS -- ResFS Aggregate Nodes

#include <u.h>

#include <libc.h>

#include <fcall.h>

#include <thread.h>

5 #include <9p.h>

#include <bio.h>

#include <ndb.h>

static int debug;

10 #define DEBUG if(!debug){} else fprint

char *service = "aggrfs";

char *progname;

15 static void

usage(void)

{

fprint(2, "aggrfs [-dD] [-s srvname]\n");

exits("usage");

20 }

void

25 listener(void)

{

char adir[NETPATHLEN], ldir[NETPATHLEN];

int acfd, dfd, lcfd;

30 switch(rfork(RFPROC|RFMEM|RFNOWAIT)){

case -1:

sysfatal("rfork: %r");

default:

return;

35 case 0:

break;

}

40 acfd = announce("tcp!*!18001", adir);

if(acfd < 0)

sysfatal("announce: %r");

for(;;){

45 lcfd = listen(adir, ldir);

if(lcfd < 0)

sysfatal("listen: %r");

APPENDIX A. SOURCE CODE LISTINGS 120

dfd = accept(lcfd, ldir);

50 if(dfd < 0)

sysfatal("accept: %r");

mount(dfd, -1, "/tmp", MAFTER, "");

55 }

}

void

listensrv(void)

60 {

Srv *s;

char adir[NETPATHLEN], ldir[NETPATHLEN];

int acfd, dfd, lcfd;

char *arglist[7], **argp;

65

switch(rfork(RFPROC|RFMEM|RFNOWAIT)){

case -1:

sysfatal("rfork: %r");

default:

70 return;

case 0:

break;

}

75 acfd = announce("tcp!*!18000", adir);

if(acfd < 0)

sysfatal("announce: %r");

for(;;){

80 lcfd = listen(adir, ldir);

if(lcfd < 0)

sysfatal("listensrv: listen: %r");

switch(rfork(RFPROC | RFMEM | RFNOWAIT | RFCFDG)){

85 case -1:

fprint(2, "fork listensrv: %r");

continue;

default:

continue;

90 case 0:

break;

}

dfd = accept(lcfd, ldir);

if(dfd < 0)

95 sysfatal("listensrv: accept: %r");

DEBUG(2, "listensrv: accepted fd: %d; ldir: %s\n", dfd, ldir);

argp = arglist;

100 *argp++ = progname;

*argp++ = "-r";

*argp++ = "/tmp";

*argp = nil;

105 dup(dfd, 0);

DEBUG(2, "listensrv: exec\n");

exec("/bin/exportfs", arglist);

fprint(2, "can’t exec exportfs: %r\n");

110 exits("exec");

APPENDIX A. SOURCE CODE LISTINGS 121

}

}

115

static void

fsread(Req *r)

{

respond(r, nil);

120 }

Srv fs=

{

.read = fsread,

125 };

void

main(int argc, char **argv)

{

130 File *f;

progname = argv[0];

ARGBEGIN{

135 case ’D’:

chatty9p++;

break;

case ’d’:

debug++;

140 break;

case ’s’:

service = EARGF(usage());

break;

default:

145 usage();

}ARGEND

if(argc > 1)

usage();

150

fs.tree = alloctree("sys", "sys", DMDIR|0555, nil);

incref(fs.tree->root);

f = createfile(fs.tree->root, "ctl", getuser(), 0664, nil);

if(f == nil)

155 sysfatal("creating ctl: %r");

f->aux = nil;

decref(fs.tree->root);

postmountsrv(&fs, service, "/tmp", MREPL);

160

listener();

listensrv();

exits(nil);

165 }

A.4 Mach – Per-processor Machine Definition

struct Mach

{

int machno; /* physical id of processor (KNOWN TO ASSEMBLY) */

APPENDIX A. SOURCE CODE LISTINGS 122

ulong splpc; /* pc of last caller to splhi */

ulong* pdb; /* page directory base for this processor (va) */

Tss* tss; /* tss for this processor */

Segdesc* gdt; /* gdt for this processor */

Proc* proc; /* current process on this processor */

Proc* externup; /* extern register Proc *up */

Page* pdbpool;

int pdbcnt;

ulong ticks; /* of the clock since boot time */

Label sched; /* scheduler wakeup */

Lock alarmlock; /* access to alarm list */

void* alarm; /* alarms bound to this clock */

int inclockintr;

Proc* readied; /* for runproc */

ulong schedticks; /* next forced context switch */

int tlbfault;

int tlbpurge;

int pfault;

int cs;

int syscall;

int load;

int intr;

int flushmmu; /* make current proc flush it’s mmu state */

int ilockdepth;

Perf perf; /* performance counters */

ulong spuriousintr;

int lastintr;

int loopconst;

Lock apictimerlock;

int cpumhz;

uvlong cyclefreq; /* Frequency of user readable cycle counter */

uvlong cpuhz;

int cpuidax;

int cpuiddx;

char cpuidid[16];

char* cpuidtype;

int havetsc;

int havepge;

uvlong tscticks;

vlong mtrrcap;

vlong mtrrdef;

vlong mtrrfix[11];

vlong mtrrvar[32]; /* 256 max. */

int stack[1];

};

Bibliography

[1] T. L. Sterling, J. Salmon, D. J. Becker, D. F. Savarese: How to Build a Beowulf,

The MPI Press, 1999.

[2] G. Bell, J Grey: What’s next in high performance computing? Communications of

the ACM, vol 45, issue 2, 2002.

[3] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman: Grid Service

Specification, Draft 3, Global Grid Forum, July 2002.

[4] I. Foster, C. Kesselman, S. Tuecke: The Anatomy of the Grid: Enabling scalable

virtual organizations, International J. Supercomputer Applications, 15(3), 2001.

[5] J. Nick I. Foster, C. Kesselman, S. Tuecke: The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration, Open Grid Service

Infrastructure WG, Global Grid Forum, June 22, 2002.

[6] H. Trickey: APE - The ANSI/POSIX Environment, Plan 9 Programmer’s Manual,

Volume 2, AT&T Bell Laboratories, Murray Hill, NJ, 1995.

[7] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, P. Win-

terbottom: Plan 9 from Bell Labs, Computing Systems, 8(3):221-254, 1995.

[8] D. Presotto, P. Winterbottom: The IL Protocol, Plan 9 Programmer’s Manual,

Volume 2, AT&T Bell Laboratories, Murray Hill, NJ, 2000.

123

BIBLIOGRAPHY 124

[9] S. Mullender, D. Presotto: Programming Distributed Applications using Plan 9 from

Bell Labs, Proceedings of the European Research Seminar on Advances in Distributed

Systems, Bertinoro, Italy, May, 2001.

[10] R. Pike, K. Thompson: Hello World, Proceedings of the Winter 1993 USENIX Con-

ference, 43-50, San Diego, 1993.

[11] R. Minnich: Private Namespaces for Linux, Dr. Dobb’s Journal, Dec 2001.

[12] R. Cox, E. Grosse, R. Pike, D. Presotto, S. Quinlan: Security in Plan 9, Proceedings

of the 11th USENIX Security Symposium, pp. 3–16, 2002.

[13] R. Pike, D. Presotto, K. Thompson, H. Trickey, P. Winterbottom: The Use of Name

Spaces in Plan 9, Op. Sys. Rev., Vol. 27, No. 2, April 1993, pp. 72-76.

[14] J. Novotny, S. Tuecke, V. Welch: An Online Credential Repository for the Grid:

MyProxy. Proceedings of the Tenth International, Symposium on High Performance

Distributed Computing (HPDC-10), IEEE Press, August 2001.

[15] Globus Alliance: The Globus Project, http://www.globus.org.

[16] Globus Alliance: GridFTP - Universal Data Transfer for the Grid, White Paper.

September 5, 2000.

[17] A. Natrajan, A. Nguyen-Tuong, M. A. Humphrey, A. S. Grimshaw: The Legion

Grid Portal, Concurrency and Computation: Practice and Experience Vol. 14, Grid

Computing environments Special Issue 13-14, 2002.

[18] The Globus Alliance: The WS-Resource Framework,

http://www.globus.org/wsrf

[19] I. Foster, N. Karonis, C. Kesselman, G. Koenig, S. Tuecke: A Secure Communica-

tions Infrastructure for High-Performance Distributed Computing, 6th IEEE Symp.

on High-Performance Distributed Computing, pp. 125-136, 1997.

BIBLIOGRAPHY 125

[20] I. Foster, S. Tuecke: Enabling Technologies for Web-Based Ubiquitous Supercom-

puting, Proc. 5th IEEE Symp. on High Performance Distributed Computing, pp.

112-119, 1996.

[21] I. Foster, C. Kesselman, S. Tuecke: The Nexus Task-Parallel Runtime System, Proc.

1st Int’l Workshop on Parallel Processing, pp. 457-462, 1994.

[22] D. Dullmann, W. Hoschek, J. Jean-Martinez, A. Samar, H. Stockinger, K.

Stockinger: Models for Replica Synchronisation and Consistency in a Data Grid,

10th IEEE Symposium on High Performance and Distributed Computing

[23] K. Ranganathan, Adriana Iamnitchi, and I. Foster: Improving Data Availability

through Dynamic Model-Driven Replication in Large Peer-to-Peer Communities, Pro-

ceedings of Global and Peer-to-Peer Computing on Large Scale Distributed Systems

Workshop, Berlin, Germany, May 2002.

[24] S. Quinlan,S. Dorward: Venti: a new approach to archival storage, Conference on

File and Storage Technologies, Monterey, CA, 28–30 January 2002.

[25] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kessel-

man, S. Meder, L. Pearlman, S. Tuecke: Security for Grid Services, Twelfth Interna-

tional Symposium on High Performance Distributed Computing (HPDC-12), IEEE

Press, June 2003.

[26] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire,

T. Sandholm, P. Vanderbilt, D. Snelling: Open Grid Services Infrastructure (OGSI)

Version 1.0, Global Grid Forum Draft Recommendation, 6/27/2003.

[27] R. Figueiredo, P. Dinda, J. Fortes: A Case for Grid Computing on Virtual Machines,

In Proceedings of the Intlernational Conference on Distributed Computing Systems

(ICDCS), 04/2003.

BIBLIOGRAPHY 126

[28] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S. Tuecke: A

Directory Service for Configuring High-Performance Distributed Computations, Proc.

6th IEEE Symposium on High-Performance Distributed Computing, pp. 365-375,

1997.

[29] The OpenPBS Project: http://www.openpbs.org.

[30] The Condor Project: http://www.cs.wisc.edu/condor/.

[31] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch: The Sprite

network operating system, IEEE Computer, 21(2):23–36, February 1988.

[32] S.J. Mullender, G. Van Rossum, A.S. Tanenbaum, R. Van Renesse, H. Van Staveren:

Amoeba: A distributed operating system for the 1990s, IEEE Computer, 14:365–368,

May 1990.

[33] I. Foster, G. von Laszewski: Usage of LDAP in Globus. http://www.globus.org.

[34] Ron Minnich, private communication, June 2003.

[35] Rob Simmonds, private communication, August 2004.

[36] M. Sottile, R. Minnich: ”Supermon: A High-Speed Cluster Monitoring System”,

IEEE Conference on Cluster Computing, September 24-26 2002.

[37] SuperMon: http://sexpr.sourceforge.net/.

[38] J. McCarthy et al.: LISP 1.5 Programmer’s Manual, 2nd edition, MIT Press, 1965.

[39] Phil Winterbottom: Alef Language Reference Manual, Plan 9 Programmer’s Manual,

Volume 2, AT&T Bell Laboratories, Murray Hill, NJ, 1995.

[40] Introduction to the 9p protocol, Plan 9 Programmer’s Manual, Volume 3, AT&T

Bell Laboratories, Murray Hill, NJ, 2000.

BIBLIOGRAPHY 127

[41] Distributed and Network Operating Systems,

http://www.csee.wvu.edu/∼jdm/classes/cs258/OScat/distr.html.

[42] WestGRID: Western Canada Research Grid, http://www.westgrid.ca.

[43] TeraGRID: Distributed Infrastructure for Open Scientific Research,

http://www.teragrid.org.

[44] Reality Grid Project, http://www.realitygrid.org.

[45] R. H. Thomas, A Resource Sharing Executive for the ARPANET, NCC, Volume 42,

1973, pp. 155-163.

[46] E. Strohmaier, J. Dongarra, Highlights of the 23rd TOP500 List, International Su-

percomputing Conference, Heidelberg, Germany, 2004.

[47] Plan 9 from Bell-Labs: http://plan9.bell-labs.com/plan9dist.

[48] Vita Nuova Holdings: http://www.vitanuova.com.

[49] Winbond W83627THF datasheet:

http://www.winbond.com.tw/c-winbondhtm/partner/PDFresult.asp?Pname=925.

[50] Lm-Sensors, Linux System Hardware Monitoring:

http://secure.netroedge.com/∼lm78/.

[51] T. J. Killian: Processes as Files, USENIX Summer 1984 Conference Proceedings,

June 1984, Salt Lake City, UT.

[52] A. Mirtchovski, R. Simmonds, R. Minnich: Plan 9 – An Integrated Approach To

Grid Computing, IPDPS-04 April 26-30 2004, Santa Fe, NM, USA

[53] W. R. Stevens: Advanced Programming in the UNIX Environment, Addison-Wesley,

1992, ISBN 0-201-56317-7.

BIBLIOGRAPHY 128

[54] J. Chin, P. V. Coveney: Towards tractable toolkits for the Grud: a plea for

lightweight, usable middleware UK e-Science Technical Report, number UKeS-2004-

01

[55] IBM DeveloperWorks: Web Services Notification and Web Services Resource Frame-

work,

http://www.ibm.com/developerworks/webservices/library/ws-resource

[56] R. J. Allan , D. R. S. Boyd , T. Folkes , C. Greenough , D. Hanlon , R. P. Middleton ,

R. A. Sansum: Evaluation of Globus and Associated Grid Middleware CLRC e-Science

Centre, 2001

[57] B. Butchart , C. Chapman , W. Emmerich: OGSA First Impressions: A Case Study

using the Open Grid Service Architecture, Proceedings of the UK E-Science All Hands

Meeting, Nottingham pp 810-816, 2003

[58] Plan 9 Software Ported to Unix,

http://swtch.com/plan9port/

[59] The 9grid Project,

http://www.9grid.net

[60] BigBangwidth,

http://www.bigbangwidth.com

[61] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham,

R. Neugebauer: Xen and the Art of Virtualization. In Proceedings of the ACM

Symposium on Operating Systems Principles, October 2003.

[62] VMWare Virtual Infrastructure,

http://www.vmware.com

[63] Big Brother System and Network Monitoring Tools,

http://www.bb4.org/

BIBLIOGRAPHY 129

[64] Berkeley DB,

http://www.sleepycat.com/

[65] Multi-Router Traffic Grapher,

http://people.ee.ethz.ch/ oetiker/webtools/mrtg/

[66] The Sysstat System Monitoring Suite,

http://perso.wanadoo.fr/sebastien.godard/

[67] Clifford Neumann: The Kerberos Network Authentication Service (V5). Internet

Draft ietf-cat-kerb-kerberos-revision-04.txt, June 1999.

[68] J. Oikarinen, D. Reed: RFC 1459: Internet Relay Chat Protocol, May 1993.

