NAME
intro – introduction to library functions |
SYNOPSIS
#include <u.h>
#include <libc.h>
#include <auth.h>
#include <bio.h>
#include <draw.h>
#include <fcall.h>
#include <frame.h>
#include <mach.h>
#include <ndb.h>
#include <regexp.h>
#include <stdio.h>
#include <thread.h> |
DESCRIPTION
This section describes functions in various libraries. For the
most part, each library is defined by a single C include file,
such as those listed above, and a single archive file containing
the library proper. The name of the archive is /$objtype/lib/libx.a,
where x is the base of the include file name, stripped of a
leading lib if present. For example, <draw.h> defines the contents
of library /$objtype/lib/libdraw.a, which may be abbreviated when
named to the loader as –ldraw. In practice, each include file contains
a #pragma that directs the loader to pick up the associated archive
automatically, so it is rarely
necessary to tell the loader which libraries a program needs.
The library to which a function belongs is defined by the header file that defines its interface. The `C library', libc, contains most of the basic subroutines such as strlen. Declarations for all of these functions are in <libc.h>, which must be preceded by (needs) an include of <u.h>. The graphics library, draw, is defined by <draw.h>, which needs <libc.h> and <u.h>. The Buffered I/O library, libbio, is defined by <bio.h>, which needs <libc.h> and <u.h>. The ANSI C Standard I/O library, libstdio, is defined by <stdio.h>, which needs <u.h>. There are a few other, less commonly used libraries defined on individual pages of this section.
The include file <u.h>, a prerequisite of several other include
files, declares the architecture–dependent and –independent types,
including: uchar, ushort, uint, and ulong, the unsigned integer
types; schar, the signed char type; vlong and uvlong, the signed
and unsigned very long integral types; Rune, the Unicode
character type; u8int, u16int, u32int, and u64int, the unsigned
integral types with specific widths; uintptr, the unsigned integral
type with the same width as a pointer; jmp_buf, the type of the
argument to setjmp and longjmp, plus macros that define the layout
of jmp_buf (see setjmp(2)); definitions of the bits in the
floating–point control register as used by getfcr(2); and the macros
va_arg and friends for accessing arguments of variadic functions
(identical to the macros defined in <stdarg.h> in ANSI C). Name space When a process presents a file name to Plan 9, it is evaluated by the following algorithm. Start with a directory that depends on the first character of the path: / means the root of the main hierarchy, # means the separate root of a kernel device's file tree (see Section 3), and anything else means the process's current working directory. Then for each path element, look up the element in the directory, advance to that directory, do a possible translation (see below), and repeat. The last step may yield a directory or regular file. The collection of files reachable from the root is called the name space of a process.
A program can use bind or mount (see bind(2)) to say that whenever
a specified file is reached during evaluation, evaluation instead
continues from a second specified file. Also, the same system
calls create union directories, which are concatenations of ordinary
directories that are searched sequentially until the
desired element is found. Using bind and mount to do name space
adjustment affects only the current process group (see below).
Certain conventions about the layout of the name space should
be preserved; see namespace(4). File I/O By convention, file descriptor 0 is the standard input, 1 is the standard output, and 2 is the standard error output. With one exception, the operating system is unaware of these conventions; it is permissible to close file 0, or even to replace it by a file open only for writing, but many programs will be confused by such chicanery. The exception is that the system prints messages about broken processes to file descriptor 2. Files are normally read or written in sequential order. The I/O position in the file is called the file offset and may be set arbitrarily using the seek(2) system call. Directories may be opened and read much like regular files. They contain an integral number of records, called directory entries. Each entry is a machine–independent representation of the information about an existing file in the directory, including the name, ownership, permission, access dates, and so on. The entry corresponding to an arbitrary file can be retrieved by stat(2) or fstat; wstat and fwstat write back entries, thus changing the properties of a file. An entry may be translated into a more convenient, addressable form called a Dir structure; dirstat, dirfstat, dirwstat, and dirfwstat execute the appropriate translations (see stat(2)). New files are made with create (see open(2)) and deleted with remove(2). Directories may not directly be written; create, remove, wstat, and fwstat alter them. The operating system kernel records the file name used to access each open file or directory. If the file is opened by a local name (one that does not begin / or #), the system makes the stored name absolute by prefixing the string associated with the current directory. Similar lexical adjustments are made for path names containing . (dot) or .. (dot–dot). By this process, the system maintains a record of the route by which each file was accessed. Although there is a possibility for error--the name is not maintained after the file is opened, so removals and renamings can confound it--this simple method usually permits the system to return, via the fd2path(2) system call and related calls such as getwd(2), a valid name that may be used to find a file again. This is also the source of the names reported in the name space listing of ns(1) or /dev/ns (see proc(3)).
Pipe(2) creates a connected pair of file descriptors, useful for
bidirectional local communication. Process execution and control Each process has a unique integer process id; a set of open files, indexed by file descriptor; and a current working directory (changed by chdir(2)). Each process has a set of attributes -- memory, open files, name space, etc. -- that may be shared or unique. Flags to rfork control the sharing of these attributes. The memory of a process is divided into segments. Every program has at least a text (instruction) and stack segment. Most also have an initialized data segment and a segment of zero–filled data called bss. Processes may segattach(2) other segments for special purposes. A process terminates by calling exits(2). A parent process may call wait(2) to wait for some child to terminate. A string of status information may be passed from exits to wait. A process can go to sleep for a specified time by calling sleep(2).
There is a notification mechanism for telling a process about
events such as address faults, floating point faults, and messages
from other processes. A process uses notify(2) to register the
function to be called (the notification handler) when such events
occur. Multithreading The thread library, defined in <thread.h>, provides support for multiprocess programs. It includes a data structure called a Channel that can be used to send messages between processes, and coroutine–like threads, which enable multiple threads of control within a single process. The threads within a process are scheduled by the library, but there is no pre–emptive scheduling within a process; thread switching occurs only at communication or synchronization points.
Most programs using the thread library comprise multiple processes
communicating over channels, and within some processes, multiple
threads. Since Plan 9 I/O calls may block, a system call may block
all the threads in a process. Therefore, a program that shouldn't
block unexpectedly will use a process to serve the
I/O request, passing the result to the main processes over a channel
when the request completes. For examples of this design, see ioproc(2)
or mouse(2). |
SEE ALSO
nm(1), 2l(1), 2c(1) |
DIAGNOSTICS
Math functions in libc return special values when the function
is undefined for the given arguments or when the value is not
representable (see nan(2)).
Some of the functions in libc are system calls and many others
employ system calls in their implementation. All system calls
return integers, with –1 indicating that an error occurred; errstr(2)
recovers a string describing the error. Some user–level library
functions also use the errstr mechanism to report errors.
Functions that may affect the value of the error string are said
to ``set errstr''; it is understood that the error string is altered
only if an error occurs. |