/* Derived from Inferno's utils/iyacc/yacc.c http://code.google.com/p/inferno-os/source/browse/utils/iyacc/yacc.c This copyright NOTICE applies to all files in this directory and subdirectories, unless another copyright notice appears in a given file or subdirectory. If you take substantial code from this software to use in other programs, you must somehow include with it an appropriate copyright notice that includes the copyright notice and the other notices below. It is fine (and often tidier) to do that in a separate file such as NOTICE, LICENCE or COPYING. Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) Portions Copyright © 1997-1999 Vita Nuova Limited Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) Portions Copyright © 2004,2006 Bruce Ellis Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others Portions Copyright © 2009 The Go Authors. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ package main // yacc // major difference is lack of stem ("y" variable) // import ( "flag"; "fmt"; "bufio"; "os"; ) // the following are adjustable // according to memory size const ( ACTSIZE = 30000; NSTATES = 2000; TEMPSIZE = 2000; SYMINC = 50; // increase for non-term or term RULEINC = 50; // increase for max rule length prodptr[i] PRODINC = 100; // increase for productions prodptr WSETINC = 50; // increase for working sets wsets STATEINC = 200; // increase for states statemem NAMESIZE = 50; NTYPES = 63; ISIZE = 400; PRIVATE = 0xE000; // unicode private use // relationships which must hold: // TEMPSIZE >= NTERMS + NNONTERM + 1; // TEMPSIZE >= NSTATES; // NTBASE = 010000; ERRCODE = 8190; ACCEPTCODE = 8191; YYLEXUNK = 3; TOKSTART = 4; //index of first defined token ) // no, left, right, binary assoc. const ( NOASC = iota; LASC; RASC; BASC; ) // flags for state generation const ( DONE = iota; MUSTDO; MUSTLOOKAHEAD; ) // flags for a rule having an action, and being reduced const ( ACTFLAG = 1 << (iota + 2); REDFLAG; ) // output parser flags const YYFLAG = -1000 // parse tokens const ( IDENTIFIER = PRIVATE + iota; MARK; TERM; LEFT; RIGHT; BINARY; PREC; LCURLY; IDENTCOLON; NUMBER; START; TYPEDEF; TYPENAME; UNION; ) const ENDFILE = 0 const EMPTY = 1 const WHOKNOWS = 0 const OK = 1 const NOMORE = -1000 // macros for getting associativity and precedence levels func ASSOC(i int) int { return i & 3 } func PLEVEL(i int) int { return (i >> 4) & 077 } func TYPE(i int) int { return (i >> 10) & 077 } // macros for setting associativity and precedence levels func SETASC(i, j int) int { return i | j } func SETPLEV(i, j int) int { return i | (j << 4) } func SETTYPE(i, j int) int { return i | (j << 10) } // I/O descriptors var finput *bufio.Reader // input file var stderr *bufio.Writer var ftable *bufio.Writer // y.go file var foutput *bufio.Writer // y.output file var oflag string // -o [y.go] - y.go file var vflag string // -v [y.output] - y.output file var lflag bool // -l - disable line directives var stacksize = 200 // communication variables between various I/O routines var infile string // input file name var numbval int // value of an input number var tokname string // input token name, slop for runes and 0 var tokflag = false // structure declarations type Lkset []int type Pitem struct { prod []int; off int; // offset within the production first int; // first term or non-term in item prodno int; // production number for sorting } type Item struct { pitem Pitem; look Lkset; } type Symb struct { name string; value int; } type Wset struct { pitem Pitem; flag int; ws Lkset; } // storage of types var ntypes int // number of types defined var typeset [NTYPES]string // pointers to type tags // token information var ntokens = 0 // number of tokens var tokset []Symb var toklev []int // vector with the precedence of the terminals // nonterminal information var nnonter = -1 // the number of nonterminals var nontrst []Symb var start int // start symbol // state information var nstate = 0 // number of states var pstate = make([]int, NSTATES+2) // index into statemem to the descriptions of the states var statemem []Item var tystate = make([]int, NSTATES) // contains type information about the states var tstates []int // states generated by terminal gotos var ntstates []int // states generated by nonterminal gotos var mstates = make([]int, NSTATES) // chain of overflows of term/nonterm generation lists var lastred int // number of last reduction of a state var defact = make([]int, NSTATES) // default actions of states // lookahead set information var lkst []Lkset var nolook = 0 // flag to turn off lookahead computations var tbitset = 0 // size of lookahead sets var clset Lkset // temporary storage for lookahead computations // working set information var wsets []Wset var cwp int // storage for action table var amem []int // action table storage var memp int // next free action table position var indgo = make([]int, NSTATES) // index to the stored goto table // temporary vector, indexable by states, terms, or ntokens var temp1 = make([]int, TEMPSIZE) // temporary storage, indexed by terms + ntokens or states var lineno = 1 // current input line number var fatfl = 1 // if on, error is fatal var nerrors = 0 // number of errors // assigned token type values var extval = 0 // grammar rule information var nprod = 1 // number of productions var prdptr [][]int // pointers to descriptions of productions var levprd []int // precedence levels for the productions var rlines []int // line number for this rule // statistics collection variables var zzgoent = 0 var zzgobest = 0 var zzacent = 0 var zzexcp = 0 var zzclose = 0 var zzrrconf = 0 var zzsrconf = 0 var zzstate = 0 // optimizer arrays var yypgo [][]int var optst [][]int var ggreed []int var pgo []int var maxspr int // maximum spread of any entry var maxoff int // maximum offset into a array var maxa int // storage for information about the nonterminals var pres [][][]int // vector of pointers to productions yielding each nonterminal var pfirst []Lkset var pempty []int // vector of nonterminals nontrivially deriving e // random stuff picked out from between functions var indebug = 0 // debugging flag for cpfir var pidebug = 0 // debugging flag for putitem var gsdebug = 0 // debugging flag for stagen var cldebug = 0 // debugging flag for closure var pkdebug = 0 // debugging flag for apack var g2debug = 0 // debugging for go2gen var adb = 0 // debugging for callopt type Resrv struct { name string; value int; } var resrv = []Resrv{ Resrv{"binary", BINARY}, Resrv{"left", LEFT}, Resrv{"nonassoc", BINARY}, Resrv{"prec", PREC}, Resrv{"right", RIGHT}, Resrv{"start", START}, Resrv{"term", TERM}, Resrv{"token", TERM}, Resrv{"type", TYPEDEF}, Resrv{"union", UNION}, Resrv{"struct", UNION}, } var zznewstate = 0 const EOF = -1 const UTFmax = 0x3f func main() { setup(); // initialize and read productions tbitset = (ntokens + 32) / 32; cpres(); // make table of which productions yield a given nonterminal cempty(); // make a table of which nonterminals can match the empty string cpfir(); // make a table of firsts of nonterminals stagen(); // generate the states yypgo = make([][]int, nnonter+1); optst = make([][]int, nstate); output(); // write the states and the tables go2out(); hideprod(); summary(); callopt(); others(); exit(0); } func setup() { var j, ty int; stderr = bufio.NewWriter(os.NewFile(2, "stderr")); foutput = nil; flag.StringVar(&oflag, "o", "", "parser output"); flag.StringVar(&vflag, "v", "", "create parsing tables"); flag.BoolVar(&lflag, "l", false, "disable line directives"); flag.Parse(); if flag.NArg() != 1 { usage() } if stacksize < 1 { // never set so cannot happen fmt.Fprintf(stderr, "yacc: stack size too small\n"); usage(); } openup(); defin(0, "$end"); extval = PRIVATE; // tokens start in unicode 'private use' defin(0, "error"); defin(1, "$accept"); defin(0, "$unk"); i := 0; t := gettok(); outer: for { switch t { default: error("syntax error tok=%v", t-PRIVATE) case MARK, ENDFILE: break outer case ';': case START: t = gettok(); if t != IDENTIFIER { error("bad %%start construction") } start = chfind(1, tokname); case TYPEDEF: t = gettok(); if t != TYPENAME { error("bad syntax in %%type") } ty = numbval; for { t = gettok(); switch t { case IDENTIFIER: t = chfind(1, tokname); if t < NTBASE { j = TYPE(toklev[t]); if j != 0 && j != ty { error("type redeclaration of token ", tokset[t].name) } else { toklev[t] = SETTYPE(toklev[t], ty) } } else { j = nontrst[t-NTBASE].value; if j != 0 && j != ty { error("type redeclaration of nonterminal %v", nontrst[t-NTBASE].name) } else { nontrst[t-NTBASE].value = ty } } continue; case ',': continue } break; } continue; case UNION: cpyunion() case LEFT, BINARY, RIGHT, TERM: // nonzero means new prec. and assoc. lev := t - TERM; if lev != 0 { i++ } ty = 0; // get identifiers so defined t = gettok(); // there is a type defined if t == TYPENAME { ty = numbval; t = gettok(); } for { switch t { case ',': t = gettok(); continue; case ';': break case IDENTIFIER: j = chfind(0, tokname); if j >= NTBASE { error("%v defined earlier as nonterminal", tokname) } if lev != 0 { if ASSOC(toklev[j]) != 0 { error("redeclaration of precedence of %v", tokname) } toklev[j] = SETASC(toklev[j], lev); toklev[j] = SETPLEV(toklev[j], i); } if ty != 0 { if TYPE(toklev[j]) != 0 { error("redeclaration of type of %v", tokname) } toklev[j] = SETTYPE(toklev[j], ty); } t = gettok(); if t == NUMBER { tokset[j].value = numbval; t = gettok(); } continue; } break; } continue; case LCURLY: cpycode() } t = gettok(); } if t == ENDFILE { error("unexpected EOF before %%") } // put out non-literal terminals for i := TOKSTART; i <= ntokens; i++ { // non-literals c := tokset[i].name[0]; if c != ' ' && c != '$' { fmt.Fprintf(ftable, "const\t%v\t= %v\n", tokset[i].name, tokset[i].value) } } // put out names of token names fmt.Fprintf(ftable, "var\tToknames\t =[]string {\n"); for i := TOKSTART; i <= ntokens; i++ { fmt.Fprintf(ftable, "\t\"%v\",\n", tokset[i].name) } fmt.Fprintf(ftable, "}\n"); // put out names of state names fmt.Fprintf(ftable, "var\tStatenames\t =[]string {\n"); // for i:=TOKSTART; i<=ntokens; i++ { // fmt.Fprintf(ftable, "\t\"%v\",\n", tokset[i].name); // } fmt.Fprintf(ftable, "}\n"); fmt.Fprintf(ftable, "\nfunc\n"); fmt.Fprintf(ftable, "yyrun(p int, yypt int) {\n"); fmt.Fprintf(ftable, "switch p {\n"); moreprod(); prdptr[0] = []int{NTBASE, start, 1, 0}; nprod = 1; curprod := make([]int, RULEINC); t = gettok(); if t != IDENTCOLON { error("bad syntax on first rule") } if start == 0 { prdptr[0][1] = chfind(1, tokname) } // read rules // put into prdptr array in the format // target // followed by id's of terminals and non-terminals // followd by -nprod for t != MARK && t != ENDFILE { mem := 0; // process a rule rlines[nprod] = lineno; if t == '|' { curprod[mem] = prdptr[nprod-1][0]; mem++; } else if t == IDENTCOLON { curprod[mem] = chfind(1, tokname); if curprod[mem] < NTBASE { error("token illegal on LHS of grammar rule") } mem++; } else { error("illegal rule: missing semicolon or | ?") } // read rule body t = gettok(); for { for t == IDENTIFIER { curprod[mem] = chfind(1, tokname); if curprod[mem] < NTBASE { levprd[nprod] = toklev[curprod[mem]] } mem++; if mem >= len(curprod) { ncurprod := make([]int, mem+RULEINC); copy(ncurprod, curprod); curprod = ncurprod; } t = gettok(); } if t == PREC { if gettok() != IDENTIFIER { error("illegal %%prec syntax") } j = chfind(2, tokname); if j >= NTBASE { error("nonterminal " + nontrst[j-NTBASE].name + " illegal after %%prec") } levprd[nprod] = toklev[j]; t = gettok(); } if t != '=' { break } levprd[nprod] |= ACTFLAG; fmt.Fprintf(ftable, "\ncase %v:", nprod); cpyact(curprod, mem); // action within rule... t = gettok(); if t == IDENTIFIER { // make it a nonterminal j = chfind(1, fmt.Sprintf("$$%v", nprod)); // // the current rule will become rule number nprod+1 // enter null production for action // prdptr[nprod] = make([]int, 2); prdptr[nprod][0] = j; prdptr[nprod][1] = -nprod; // update the production information nprod++; moreprod(); levprd[nprod] = levprd[nprod-1] & ^ACTFLAG; levprd[nprod-1] = ACTFLAG; rlines[nprod] = lineno; // make the action appear in the original rule curprod[mem] = j; mem++; if mem >= len(curprod) { ncurprod := make([]int, mem+RULEINC); copy(ncurprod, curprod); curprod = ncurprod; } } } for t == ';' { t = gettok() } curprod[mem] = -nprod; mem++; // check that default action is reasonable if ntypes != 0 && (levprd[nprod]&ACTFLAG) == 0 && nontrst[curprod[0]-NTBASE].value != 0 { // no explicit action, LHS has value tempty := curprod[1]; if tempty < 0 { error("must return a value, since LHS has a type") } if tempty >= NTBASE { tempty = nontrst[tempty-NTBASE].value } else { tempty = TYPE(toklev[tempty]) } if tempty != nontrst[curprod[0]-NTBASE].value { error("default action causes potential type clash") } fmt.Fprintf(ftable, "\ncase %v:", nprod); fmt.Fprintf(ftable, "\n\tYYVAL.%v = YYS[yypt-0].%v;", typeset[tempty], typeset[tempty]); } moreprod(); prdptr[nprod] = make([]int, mem); copy(prdptr[nprod], curprod); nprod++; moreprod(); levprd[nprod] = 0; } // // end of all rules // dump out the prefix code // fmt.Fprintf(ftable, "\n\t}"); fmt.Fprintf(ftable, "\n}\n"); fmt.Fprintf(ftable, "const YYEOFCODE = 1\n"); fmt.Fprintf(ftable, "const YYERRCODE = 2\n"); fmt.Fprintf(ftable, "const YYMAXDEPTH = %v\n", stacksize); // // copy any postfix code // if t == MARK { if !lflag { fmt.Fprintf(ftable, "\n//line %v:%v\n", infile, lineno) } for { c := getrune(finput); if c == EOF { break } putrune(ftable, c); } } } // // allocate enough room to hold another production // func moreprod() { n := len(prdptr); if nprod >= n { nn := n + PRODINC; aprod := make([][]int, nn); alevprd := make([]int, nn); arlines := make([]int, nn); copy(aprod, prdptr); copy(alevprd, levprd); copy(arlines, rlines); prdptr = aprod; levprd = alevprd; rlines = arlines; } } // // define s to be a terminal if t=0 // or a nonterminal if t=1 // func defin(nt int, s string) int { val := 0; if nt != 0 { nnonter++; if nnonter >= len(nontrst) { anontrst := make([]Symb, nnonter+SYMINC); copy(anontrst, nontrst); nontrst = anontrst; } nontrst[nnonter] = Symb{s, 0}; return NTBASE + nnonter; } // must be a token ntokens++; if ntokens >= len(tokset) { nn := ntokens + SYMINC; atokset := make([]Symb, nn); atoklev := make([]int, nn); copy(atoklev, toklev); copy(atokset, tokset); tokset = atokset; toklev = atoklev; } tokset[ntokens].name = s; toklev[ntokens] = 0; // establish value for token // single character literal if s[0] == ' ' && len(s) == 1+1 { val = int(s[1]) } else if s[0] == ' ' && s[1] == '\\' { // escape sequence if len(s) == 2+1 { // single character escape sequence switch s[2] { case '\'': val = '\'' case '"': val = '"' case '\\': val = '\\' case 'a': val = '\a' case 'b': val = '\b' case 'n': val = '\n' case 'r': val = '\r' case 't': val = '\t' case 'v': val = '\v' default: error("invalid escape %v", s[1:3]) } } else if s[2] == 'u' && len(s) == 2+1+4 { // \unnnn sequence val = 0; s = s[3:]; for s != "" { c := int(s[0]); switch { case c >= '0' && c <= '9': c -= '0' case c >= 'a' && c <= 'f': c -= 'a' - 10 case c >= 'A' && c <= 'F': c -= 'A' - 10 default: error("illegal \\unnnn construction") } val = val*16 + c; s = s[1:]; } if val == 0 { error("'\\u0000' is illegal") } } else { error("unknown escape") } } else { val = extval; extval++; } tokset[ntokens].value = val; return ntokens; } var peekline = 0 func gettok() int { var i, match, c int; tokname = ""; for { lineno += peekline; peekline = 0; c = getrune(finput); for c == ' ' || c == '\n' || c == '\t' || c == '\v' || c == '\r' { if c == '\n' { lineno++ } c = getrune(finput); } // skip comment -- fix if c != '/' { break } lineno += skipcom(); } switch c { case EOF: if tokflag { fmt.Printf(">>> ENDFILE %v\n", lineno) } return ENDFILE; case '{': ungetrune(finput, c); if tokflag { fmt.Printf(">>> ={ %v\n", lineno) } return '='; case '<': // get, and look up, a type name (union member name) c = getrune(finput); for c != '>' && c != EOF && c != '\n' { tokname += string(c); c = getrune(finput); } if c != '>' { error("unterminated < ... > clause") } for i = 1; i <= ntypes; i++ { if typeset[i] == tokname { numbval = i; if tokflag { fmt.Printf(">>> TYPENAME old <%v> %v\n", tokname, lineno) } return TYPENAME; } } ntypes++; numbval = ntypes; typeset[numbval] = tokname; if tokflag { fmt.Printf(">>> TYPENAME new <%v> %v\n", tokname, lineno) } return TYPENAME; case '"', '\'': match = c; tokname = " "; for { c = getrune(finput); if c == '\n' || c == EOF { error("illegal or missing ' or \"") } if c == '\\' { tokname += string('\\'); c = getrune(finput); } else if c == match { if tokflag { fmt.Printf(">>> IDENTIFIER \"%v\" %v\n", tokname, lineno) } return IDENTIFIER; } tokname += string(c); } case '%': c = getrune(finput); switch c { case '%': if tokflag { fmt.Printf(">>> MARK %%%% %v\n", lineno) } return MARK; case '=': if tokflag { fmt.Printf(">>> PREC %%= %v\n", lineno) } return PREC; case '{': if tokflag { fmt.Printf(">>> LCURLY %%{ %v\n", lineno) } return LCURLY; } getword(c); // find a reserved word for c = 0; c < len(resrv); c++ { if tokname == resrv[c].name { if tokflag { fmt.Printf(">>> %%%v %v %v\n", tokname, resrv[c].value-PRIVATE, lineno) } return resrv[c].value; } } error("invalid escape, or illegal reserved word: %v", tokname); case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': numbval = c - '0'; for { c = getrune(finput); if !isdigit(c) { break } numbval = numbval*10 + c - '0'; } ungetrune(finput, c); if tokflag { fmt.Printf(">>> NUMBER %v %v\n", numbval, lineno) } return NUMBER; default: if isword(c) || c == '.' || c == '$' { getword(c); break; } if tokflag { fmt.Printf(">>> OPERATOR %v %v\n", string(c), lineno) } return c; } // look ahead to distinguish IDENTIFIER from IDENTCOLON c = getrune(finput); for c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\r' || c == '/' { if c == '\n' { peekline++ } // look for comments if c == '/' { peekline += skipcom() } c = getrune(finput); } if c == ':' { if tokflag { fmt.Printf(">>> IDENTCOLON %v: %v\n", tokname, lineno) } return IDENTCOLON; } ungetrune(finput, c); if tokflag { fmt.Printf(">>> IDENTIFIER %v %v\n", tokname, lineno) } return IDENTIFIER; } func getword(c int) { tokname = ""; for isword(c) || isdigit(c) || c == '_' || c == '.' || c == '$' { tokname += string(c); c = getrune(finput); } ungetrune(finput, c); } // // determine the type of a symbol // func fdtype(t int) int { var v int; var s string; if t >= NTBASE { v = nontrst[t-NTBASE].value; s = nontrst[t-NTBASE].name; } else { v = TYPE(toklev[t]); s = tokset[t].name; } if v <= 0 { error("must specify type for %v", s) } return v; } func chfind(t int, s string) int { if s[0] == ' ' { t = 0 } for i := 0; i <= ntokens; i++ { if s == tokset[i].name { return i } } for i := 0; i <= nnonter; i++ { if s == nontrst[i].name { return NTBASE + i } } // cannot find name if t > 1 { error("%v should have been defined earlier", s) } return defin(t, s); } // // copy the union declaration to the output, and the define file if present // func cpyunion() { if !lflag { fmt.Fprintf(ftable, "\n//line %v %v\n", lineno, infile) } fmt.Fprintf(ftable, "type\tYYSTYPE\tstruct"); level := 0; out: for { c := getrune(finput); if c == EOF { error("EOF encountered while processing %%union") } putrune(ftable, c); switch c { case '\n': lineno++ case '{': if level == 0 { fmt.Fprintf(ftable, "\n\tyys\tint;") } level++; case '}': level--; if level == 0 { break out } } } fmt.Fprintf(ftable, "\n"); fmt.Fprintf(ftable, "var\tyylval\tYYSTYPE\n"); fmt.Fprintf(ftable, "var\tYYVAL\tYYSTYPE\n"); fmt.Fprintf(ftable, "var\tYYS\t[%v]YYSTYPE\n", stacksize); } // // saves code between %{ and %} // func cpycode() { lno := lineno; c := getrune(finput); if c == '\n' { c = getrune(finput); lineno++; } if !lflag { fmt.Fprintf(ftable, "\n//line %v %v\n", lineno, infile) } for c != EOF { if c == '%' { c = getrune(finput); if c == '}' { return } putrune(ftable, '%'); } putrune(ftable, c); if c == '\n' { lineno++ } c = getrune(finput); } lineno = lno; error("eof before %%}"); } //func //addcode(k int, s string) //{ // for i := 0; i < len(s); i++ { // addcodec(k, int(s[i])); // } //} //func //addcodec(k, c int) //{ // if codehead == nil || k != codetail.kind || codetail.ndata >= NCode { // cd := new(Code); // cd.kind = k; // cd.data = make([]byte, NCode+UTFmax); // cd.ndata = 0; // cd.next = nil; // // if codehead == nil { // codehead = cd; // } else // codetail.next = cd; // codetail = cd; // } // ////!! codetail.ndata += sys->char2byte(c, codetail.data, codetail.ndata); //} //func //dumpcode(til int) //{ // for ; codehead != nil; codehead = codehead.next { // if codehead.kind == til { // return; // } // if write(ftable, codehead.data, codehead.ndata) != codehead.ndata { // error("can't write output file"); // } // } //} // // write out the module declaration and any token info // //func //dumpmod() //{ // // for ; codehead != nil; codehead = codehead.next { // if codehead.kind != CodeMod { // break; // } // if write(ftable, codehead.data, codehead.ndata) != codehead.ndata { // error("can't write output file"); // } // } // // for i:=TOKSTART; i<=ntokens; i++ { // // non-literals // c := tokset[i].name[0]; // if c != ' ' && c != '$' { // fmt.Fprintf(ftable, "vonst %v %v\n", // tokset[i].name, tokset[i].value); // } // } // //} // // skip over comments // skipcom is called after reading a '/' // func skipcom() int { var c int; c = getrune(finput); if c == '/' { for c != EOF { if c == '\n' { return 1 } c = getrune(finput); } error("EOF inside comment"); return 0; } if c != '*' { error("illegal comment") } nl := 0; // lines skipped c = getrune(finput); l1: switch c { case '*': c = getrune(finput); if c == '/' { break } goto l1; case '\n': nl++; fallthrough; default: c = getrune(finput); goto l1; } return nl; } func dumpprod(curprod []int, max int) { fmt.Printf("\n"); for i := 0; i < max; i++ { p := curprod[i]; if p < 0 { fmt.Printf("[%v] %v\n", i, p) } else { fmt.Printf("[%v] %v\n", i, symnam(p)) } } } // // copy action to the next ; or closing } // func cpyact(curprod []int, max int) { if !lflag { fmt.Fprintf(ftable, "\n//line %v %v\n", lineno, infile) } lno := lineno; brac := 0; loop: for { c := getrune(finput); swt: switch c { case ';': if brac == 0 { putrune(ftable, c); return; } case '{': if brac == 0 { } putrune(ftable, '\t'); brac++; case '$': s := 1; tok := -1; c = getrune(finput); // type description if c == '<' { ungetrune(finput, c); if gettok() != TYPENAME { error("bad syntax on $ clause") } tok = numbval; c = getrune(finput); } if c == '$' { fmt.Fprintf(ftable, "YYVAL"); // put out the proper tag... if ntypes != 0 { if tok < 0 { tok = fdtype(curprod[0]) } fmt.Fprintf(ftable, ".%v", typeset[tok]); } continue loop; } if c == '-' { s = -s; c = getrune(finput); } j := 0; if isdigit(c) { for isdigit(c) { j = j*10 + c - '0'; c = getrune(finput); } ungetrune(finput, c); j = j * s; if j >= max { error("Illegal use of $%v", j) } } else if isword(c) || c == '_' || c == '.' { // look for $name ungetrune(finput, c); if gettok() != IDENTIFIER { error("$ must be followed by an identifier") } tokn := chfind(2, tokname); fnd := -1; c = getrune(finput); if c != '@' { ungetrune(finput, c) } else if gettok() != NUMBER { error("@ must be followed by number") } else { fnd = numbval } for j = 1; j < max; j++ { if tokn == curprod[j] { fnd--; if fnd <= 0 { break } } } if j >= max { error("$name or $name@number not found") } } else { putrune(ftable, '$'); if s < 0 { putrune(ftable, '-') } ungetrune(finput, c); continue loop; } fmt.Fprintf(ftable, "YYS[yypt-%v]", max-j-1); // put out the proper tag if ntypes != 0 { if j <= 0 && tok < 0 { error("must specify type of $%v", j) } if tok < 0 { tok = fdtype(curprod[j]) } fmt.Fprintf(ftable, ".%v", typeset[tok]); } continue loop; case '}': brac--; if brac != 0 { break } putrune(ftable, c); return; case '/': // a comment putrune(ftable, c); c = getrune(finput); for c != EOF { if c == '\n' { lineno++; break swt; } putrune(ftable, c); c = getrune(finput); } error("EOF inside comment"); case '\'', '"': // character string or constant match := c; putrune(ftable, c); c = getrune(finput); for c != EOF { if c == '\\' { putrune(ftable, c); c = getrune(finput); if c == '\n' { lineno++ } } else if c == match { break swt } if c == '\n' { error("newline in string or char const") } putrune(ftable, c); c = getrune(finput); } error("EOF in string or character constant"); case EOF: lineno = lno; error("action does not terminate"); case '\n': lineno++ } putrune(ftable, c); } } func openup() { infile = flag.Arg(0); finput = open(infile); if finput == nil { error("cannot open %v", infile) } foutput = nil; if vflag != "" { foutput = create(vflag, 0666); if foutput == nil { error("can't create file %v", vflag) } } ftable = nil; if oflag == "" { oflag = "y.go" } ftable = create(oflag, 0666); if ftable == nil { error("can't create file %v", oflag) } } // // return a pointer to the name of symbol i // func symnam(i int) string { var s string; if i >= NTBASE { s = nontrst[i-NTBASE].name } else { s = tokset[i].name } if s[0] == ' ' { s = s[1:] } return s; } // // set elements 0 through n-1 to c // func aryfil(v []int, n, c int) { for i := 0; i < n; i++ { v[i] = c } } // // compute an array with the beginnings of productions yielding given nonterminals // The array pres points to these lists // the array pyield has the lists: the total size is only NPROD+1 // func cpres() { pres = make([][][]int, nnonter+1); curres := make([][]int, nprod); if false { for j := 0; j <= nnonter; j++ { fmt.Printf("nnonter[%v] = %v\n", j, nontrst[j].name) } for j := 0; j < nprod; j++ { fmt.Printf("prdptr[%v][0] = %v+NTBASE\n", j, prdptr[j][0]-NTBASE) } } fatfl = 0; // make undefined symbols nonfatal for i := 0; i <= nnonter; i++ { n := 0; c := i + NTBASE; for j := 0; j < nprod; j++ { if prdptr[j][0] == c { curres[n] = prdptr[j][1:]; n++; } } if n == 0 { error("nonterminal %v not defined", nontrst[i].name); continue; } pres[i] = make([][]int, n); copy(pres[i], curres); } fatfl = 1; if nerrors != 0 { summary(); exit(1); } } func dumppres() { for i := 0; i <= nnonter; i++ { print("nonterm %d\n", i); curres := pres[i]; for j := 0; j < len(curres); j++ { print("\tproduction %d:", j); prd := curres[j]; for k := 0; k < len(prd); k++ { print(" %d", prd[k]) } print("\n"); } } } // // mark nonterminals which derive the empty string // also, look for nonterminals which don't derive any token strings // func cempty() { var i, p, np int; var prd []int; pempty = make([]int, nnonter+1); // first, use the array pempty to detect productions that can never be reduced // set pempty to WHONOWS aryfil(pempty, nnonter+1, WHOKNOWS); // now, look at productions, marking nonterminals which derive something more: for { for i = 0; i < nprod; i++ { prd = prdptr[i]; if pempty[prd[0]-NTBASE] != 0 { continue } np = len(prd) - 1; for p = 1; p < np; p++ { if prd[p] >= NTBASE && pempty[prd[p]-NTBASE] == WHOKNOWS { break } } // production can be derived if p == np { pempty[prd[0]-NTBASE] = OK; continue more; } } break; } // now, look at the nonterminals, to see if they are all OK for i = 0; i <= nnonter; i++ { // the added production rises or falls as the start symbol ... if i == 0 { continue } if pempty[i] != OK { fatfl = 0; error("nonterminal " + nontrst[i].name + " never derives any token string"); } } if nerrors != 0 { summary(); exit(1); } // now, compute the pempty array, to see which nonterminals derive the empty string // set pempty to WHOKNOWS aryfil(pempty, nnonter+1, WHOKNOWS); // loop as long as we keep finding empty nonterminals again: for { next: for i = 1; i < nprod; i++ { // not known to be empty prd = prdptr[i]; if pempty[prd[0]-NTBASE] != WHOKNOWS { continue } np = len(prd) - 1; for p = 1; p < np; p++ { if prd[p] < NTBASE || pempty[prd[p]-NTBASE] != EMPTY { continue next } } // we have a nontrivially empty nonterminal pempty[prd[0]-NTBASE] = EMPTY; // got one ... try for another continue again; } return; } } func dumpempty() { for i := 0; i <= nnonter; i++ { if pempty[i] == EMPTY { print("non-term %d %s matches empty\n", i, symnam(i+NTBASE)) } } } // // compute an array with the first of nonterminals // func cpfir() { var s, n, p, np, ch, i int; var curres [][]int; var prd []int; wsets = make([]Wset, nnonter+WSETINC); pfirst = make([]Lkset, nnonter+1); for i = 0; i <= nnonter; i++ { wsets[i].ws = mkset(); pfirst[i] = mkset(); curres = pres[i]; n = len(curres); // initially fill the sets for s = 0; s < n; s++ { prd = curres[s]; np = len(prd) - 1; for p = 0; p < np; p++ { ch = prd[p]; if ch < NTBASE { setbit(pfirst[i], ch); break; } if pempty[ch-NTBASE] == 0 { break } } } } // now, reflect transitivity changes := 1; for changes != 0 { changes = 0; for i = 0; i <= nnonter; i++ { curres = pres[i]; n = len(curres); for s = 0; s < n; s++ { prd = curres[s]; np = len(prd) - 1; for p = 0; p < np; p++ { ch = prd[p] - NTBASE; if ch < 0 { break } changes |= setunion(pfirst[i], pfirst[ch]); if pempty[ch] == 0 { break } } } } } if indebug == 0 { return } if foutput != nil { for i = 0; i <= nnonter; i++ { fmt.Fprintf(foutput, "\n%v: %v %v\n", nontrst[i].name, pfirst[i], pempty[i]) } } } // // generate the states // func stagen() { // initialize nstate = 0; tstates = make([]int, ntokens+1); // states generated by terminal gotos ntstates = make([]int, nnonter+1); // states generated by nonterminal gotos amem = make([]int, ACTSIZE); memp = 0; clset = mkset(); pstate[0] = 0; pstate[1] = 0; aryfil(clset, tbitset, 0); putitem(Pitem{prdptr[0], 0, 0, 0}, clset); tystate[0] = MUSTDO; nstate = 1; pstate[2] = pstate[1]; // // now, the main state generation loop // first pass generates all of the states // later passes fix up lookahead // could be sped up a lot by remembering // results of the first pass rather than recomputing // first := 1; for more := 1; more != 0; first = 0 { more = 0; for i := 0; i < nstate; i++ { if tystate[i] != MUSTDO { continue } tystate[i] = DONE; aryfil(temp1, nnonter+1, 0); // take state i, close it, and do gotos closure(i); // generate goto's for p := 0; p < cwp; p++ { pi := wsets[p]; if pi.flag != 0 { continue } wsets[p].flag = 1; c := pi.pitem.first; if c <= 1 { if pstate[i+1]-pstate[i] <= p { tystate[i] = MUSTLOOKAHEAD } continue; } // do a goto on c putitem(wsets[p].pitem, wsets[p].ws); for q := p + 1; q < cwp; q++ { // this item contributes to the goto if c == wsets[q].pitem.first { putitem(wsets[q].pitem, wsets[q].ws); wsets[q].flag = 1; } } if c < NTBASE { state(c) // register new state } else { temp1[c-NTBASE] = state(c) } } if gsdebug != 0 && foutput != nil { fmt.Fprintf(foutput, "%v: ", i); for j := 0; j <= nnonter; j++ { if temp1[j] != 0 { fmt.Fprintf(foutput, "%v %v,", nontrst[j].name, temp1[j]) } } fmt.Fprintf(foutput, "\n"); } if first != 0 { indgo[i] = apack(temp1[1:], nnonter-1) - 1 } more++; } } } // // generate the closure of state i // func closure(i int) { zzclose++; // first, copy kernel of state i to wsets cwp = 0; q := pstate[i+1]; for p := pstate[i]; p < q; p++ { wsets[cwp].pitem = statemem[p].pitem; wsets[cwp].flag = 1; // this item must get closed copy(wsets[cwp].ws, statemem[p].look); cwp++; } // now, go through the loop, closing each item work := 1; for work != 0 { work = 0; for u := 0; u < cwp; u++ { if wsets[u].flag == 0 { continue } // dot is before c c := wsets[u].pitem.first; if c < NTBASE { wsets[u].flag = 0; // only interesting case is where . is before nonterminal continue; } // compute the lookahead aryfil(clset, tbitset, 0); // find items involving c for v := u; v < cwp; v++ { if wsets[v].flag != 1 || wsets[v].pitem.first != c { continue } pi := wsets[v].pitem.prod; ipi := wsets[v].pitem.off + 1; wsets[v].flag = 0; if nolook != 0 { continue } ch := pi[ipi]; ipi++; for ch > 0 { // terminal symbol if ch < NTBASE { setbit(clset, ch); break; } // nonterminal symbol setunion(clset, pfirst[ch-NTBASE]); if pempty[ch-NTBASE] == 0 { break } ch = pi[ipi]; ipi++; } if ch <= 0 { setunion(clset, wsets[v].ws) } } // // now loop over productions derived from c // curres := pres[c-NTBASE]; n := len(curres); nexts: // initially fill the sets for s := 0; s < n; s++ { prd := curres[s]; // // put these items into the closure // is the item there // for v := 0; v < cwp; v++ { // yes, it is there if wsets[v].pitem.off == 0 && aryeq(wsets[v].pitem.prod, prd) != 0 { if nolook == 0 && setunion(wsets[v].ws, clset) != 0 { wsets[v].flag = 1; work = 1; } continue nexts; } } // not there; make a new entry if cwp >= len(wsets) { awsets := make([]Wset, cwp+WSETINC); copy(awsets, wsets); wsets = awsets; } wsets[cwp].pitem = Pitem{prd, 0, prd[0], -prd[len(prd)-1]}; wsets[cwp].flag = 1; wsets[cwp].ws = mkset(); if nolook == 0 { work = 1; copy(wsets[cwp].ws, clset); } cwp++; } } } // have computed closure; flags are reset; return if cldebug != 0 && foutput != nil { fmt.Fprintf(foutput, "\nState %v, nolook = %v\n", i, nolook); for u := 0; u < cwp; u++ { if wsets[u].flag != 0 { fmt.Fprintf(foutput, "flag set\n") } wsets[u].flag = 0; fmt.Fprintf(foutput, "\t%v", writem(wsets[u].pitem)); prlook(wsets[u].ws); fmt.Fprintf(foutput, "\n"); } } } // // sorts last state,and sees if it equals earlier ones. returns state number // func state(c int) int { zzstate++; p1 := pstate[nstate]; p2 := pstate[nstate+1]; if p1 == p2 { return 0 // null state } // sort the items var k, l int; for k = p1 + 1; k < p2; k++ { // make k the biggest for l = k; l > p1; l-- { if statemem[l].pitem.prodno < statemem[l-1].pitem.prodno || statemem[l].pitem.prodno == statemem[l-1].pitem.prodno && statemem[l].pitem.off < statemem[l-1].pitem.off { s := statemem[l]; statemem[l] = statemem[l-1]; statemem[l-1] = s; } else { break } } } size1 := p2 - p1; // size of state var i int; if c >= NTBASE { i = ntstates[c-NTBASE] } else { i = tstates[c] } look: for ; i != 0; i = mstates[i] { // get ith state q1 := pstate[i]; q2 := pstate[i+1]; size2 := q2 - q1; if size1 != size2 { continue } k = p1; for l = q1; l < q2; l++ { if aryeq(statemem[l].pitem.prod, statemem[k].pitem.prod) == 0 || statemem[l].pitem.off != statemem[k].pitem.off { continue look } k++; } // found it pstate[nstate+1] = pstate[nstate]; // delete last state // fix up lookaheads if nolook != 0 { return i } k = p1; for l = q1; l < q2; l++ { if setunion(statemem[l].look, statemem[k].look) != 0 { tystate[i] = MUSTDO } k++; } return i; } // state is new zznewstate++; if nolook != 0 { error("yacc state/nolook error") } pstate[nstate+2] = p2; if nstate+1 >= NSTATES { error("too many states") } if c >= NTBASE { mstates[nstate] = ntstates[c-NTBASE]; ntstates[c-NTBASE] = nstate; } else { mstates[nstate] = tstates[c]; tstates[c] = nstate; } tystate[nstate] = MUSTDO; nstate++; return nstate - 1; } func putitem(p Pitem, set Lkset) { p.off++; p.first = p.prod[p.off]; if pidebug != 0 && foutput != nil { fmt.Fprintf(foutput, "putitem(%v), state %v\n", writem(p), nstate) } j := pstate[nstate+1]; if j >= len(statemem) { asm := make([]Item, j+STATEINC); copy(asm, statemem); statemem = asm; } statemem[j].pitem = p; if nolook == 0 { s := mkset(); copy(s, set); statemem[j].look = s; } j++; pstate[nstate+1] = j; } // // creates output string for item pointed to by pp // func writem(pp Pitem) string { var i int; p := pp.prod; q := chcopy(nontrst[prdptr[pp.prodno][0]-NTBASE].name) + ": "; npi := pp.off; pi := aryeq(p, prdptr[pp.prodno]); for { c := ' '; if pi == npi { c = '.' } q += string(c); i = p[pi]; pi++; if i <= 0 { break } q += chcopy(symnam(i)); } // an item calling for a reduction i = p[npi]; if i < 0 { q += fmt.Sprintf(" (%v)", -i) } return q; } // // pack state i from temp1 into amem // func apack(p []int, n int) int { // // we don't need to worry about checking because // we will only look at entries known to be there... // eliminate leading and trailing 0's // off := 0; pp := 0; for ; pp <= n && p[pp] == 0; pp++ { off-- } // no actions if pp > n { return 0 } for ; n > pp && p[n] == 0; n-- { } p = p[pp : n+1]; // now, find a place for the elements from p to q, inclusive r := len(amem) - len(p); nextk: for rr := 0; rr <= r; rr++ { qq := rr; for pp = 0; pp < len(p); pp++ { if p[pp] != 0 { if p[pp] != amem[qq] && amem[qq] != 0 { continue nextk } } qq++; } // we have found an acceptable k if pkdebug != 0 && foutput != nil { fmt.Fprintf(foutput, "off = %v, k = %v\n", off+rr, rr) } qq = rr; for pp = 0; pp < len(p); pp++ { if p[pp] != 0 { if qq > memp { memp = qq } amem[qq] = p[pp]; } qq++; } if pkdebug != 0 && foutput != nil { for pp = 0; pp <= memp; pp += 10 { fmt.Fprintf(foutput, "\n"); for qq = pp; qq <= pp+9; qq++ { fmt.Fprintf(foutput, "%v ", amem[qq]) } fmt.Fprintf(foutput, "\n"); } } return off + rr; } error("no space in action table"); return 0; } // // print the output for the states // func output() { var c, u, v int; fmt.Fprintf(ftable, "var\tYYEXCA = []int {\n"); noset := mkset(); // output the stuff for state i for i := 0; i < nstate; i++ { nolook = 0; if tystate[i] != MUSTLOOKAHEAD { nolook = 1 } closure(i); // output actions nolook = 1; aryfil(temp1, ntokens+nnonter+1, 0); for u = 0; u < cwp; u++ { c = wsets[u].pitem.first; if c > 1 && c < NTBASE && temp1[c] == 0 { for v = u; v < cwp; v++ { if c == wsets[v].pitem.first { putitem(wsets[v].pitem, noset) } } temp1[c] = state(c); } else if c > NTBASE { c -= NTBASE; if temp1[c+ntokens] == 0 { temp1[c+ntokens] = amem[indgo[i]+c] } } } if i == 1 { temp1[1] = ACCEPTCODE } // now, we have the shifts; look at the reductions lastred = 0; for u = 0; u < cwp; u++ { c = wsets[u].pitem.first; // reduction if c > 0 { continue } lastred = -c; us := wsets[u].ws; for k := 0; k <= ntokens; k++ { if bitset(us, k) == 0 { continue } if temp1[k] == 0 { temp1[k] = c } else if temp1[k] < 0 { // reduce/reduce conflict if foutput != nil { fmt.Fprintf(foutput, "\n %v: reduce/reduce conflict (red'ns " "%v and %v) on %v", i, -temp1[k], lastred, symnam(k)) } if -temp1[k] > lastred { temp1[k] = -lastred } zzrrconf++; } else { // potential shift/reduce conflict precftn(lastred, k, i) } } } wract(i); } fmt.Fprintf(ftable, "}\n"); fmt.Fprintf(ftable, "const\tYYNPROD\t= %v\n", nprod); fmt.Fprintf(ftable, "const\tYYPRIVATE\t= %v\n", PRIVATE); fmt.Fprintf(ftable, "var\tYYTOKENNAMES []string\n"); fmt.Fprintf(ftable, "var\tYYSTATES\n[]string\n"); } // // decide a shift/reduce conflict by precedence. // r is a rule number, t a token number // the conflict is in state s // temp1[t] is changed to reflect the action // func precftn(r, t, s int) { var action int; lp := levprd[r]; lt := toklev[t]; if PLEVEL(lt) == 0 || PLEVEL(lp) == 0 { // conflict if foutput != nil { fmt.Fprintf(foutput, "\n%v: shift/reduce conflict (shift %v(%v), red'n %v(%v)) on %v", s, temp1[t], PLEVEL(lt), r, PLEVEL(lp), symnam(t)) } zzsrconf++; return; } if PLEVEL(lt) == PLEVEL(lp) { action = ASSOC(lt) } else if PLEVEL(lt) > PLEVEL(lp) { action = RASC // shift } else { action = LASC } // reduce switch action { case BASC: // error action temp1[t] = ERRCODE case LASC: // reduce temp1[t] = -r } } // // output state i // temp1 has the actions, lastred the default // func wract(i int) { var p, p1 int; // find the best choice for lastred lastred = 0; ntimes := 0; for j := 0; j <= ntokens; j++ { if temp1[j] >= 0 { continue } if temp1[j]+lastred == 0 { continue } // count the number of appearances of temp1[j] count := 0; tred := -temp1[j]; levprd[tred] |= REDFLAG; for p = 0; p <= ntokens; p++ { if temp1[p]+tred == 0 { count++ } } if count > ntimes { lastred = tred; ntimes = count; } } // // for error recovery, arrange that, if there is a shift on the // error recovery token, `error', that the default be the error action // if temp1[2] > 0 { lastred = 0 } // clear out entries in temp1 which equal lastred // count entries in optst table n := 0; for p = 0; p <= ntokens; p++ { p1 = temp1[p]; if p1+lastred == 0 { temp1[p] = 0; p1 = 0; } if p1 > 0 && p1 != ACCEPTCODE && p1 != ERRCODE { n++ } } wrstate(i); defact[i] = lastred; flag := 0; os := make([]int, n*2); n = 0; for p = 0; p <= ntokens; p++ { p1 = temp1[p]; if p1 != 0 { if p1 < 0 { p1 = -p1 } else if p1 == ACCEPTCODE { p1 = -1 } else if p1 == ERRCODE { p1 = 0 } else { os[n] = p; n++; os[n] = p1; n++; zzacent++; continue; } if flag == 0 { fmt.Fprintf(ftable, "-1, %v,\n", i) } flag++; fmt.Fprintf(ftable, "\t%v, %v,\n", p, p1); zzexcp++; } } if flag != 0 { defact[i] = -2; fmt.Fprintf(ftable, "\t-2, %v,\n", lastred); } optst[i] = os; } // // writes state i // func wrstate(i int) { var j0, j1, u int; var pp, qq int; if foutput == nil { return } fmt.Fprintf(foutput, "\nstate %v\n", i); qq = pstate[i+1]; for pp = pstate[i]; pp < qq; pp++ { fmt.Fprintf(foutput, "\t%v\n", writem(statemem[pp].pitem)) } if tystate[i] == MUSTLOOKAHEAD { // print out empty productions in closure for u = pstate[i+1] - pstate[i]; u < cwp; u++ { if wsets[u].pitem.first < 0 { fmt.Fprintf(foutput, "\t%v\n", writem(wsets[u].pitem)) } } } // check for state equal to another for j0 = 0; j0 <= ntokens; j0++ { j1 = temp1[j0]; if j1 != 0 { fmt.Fprintf(foutput, "\n\t%v ", symnam(j0)); // shift, error, or accept if j1 > 0 { if j1 == ACCEPTCODE { fmt.Fprintf(foutput, "accept") } else if j1 == ERRCODE { fmt.Fprintf(foutput, "error") } else { fmt.Fprintf(foutput, "shift %v", j1) } } else { fmt.Fprintf(foutput, "reduce %v (src line %v)", -j1, rlines[-j1]) } } } // output the final production if lastred != 0 { fmt.Fprintf(foutput, "\n\t. reduce %v (src line %v)\n\n", lastred, rlines[lastred]) } else { fmt.Fprintf(foutput, "\n\t. error\n\n") } // now, output nonterminal actions j1 = ntokens; for j0 = 1; j0 <= nnonter; j0++ { j1++; if temp1[j1] != 0 { fmt.Fprintf(foutput, "\t%v goto %v\n", symnam(j0+NTBASE), temp1[j1]) } } } // // output the gotos for the nontermninals // func go2out() { for i := 1; i <= nnonter; i++ { go2gen(i); // find the best one to make default best := -1; times := 0; // is j the most frequent for j := 0; j < nstate; j++ { if tystate[j] == 0 { continue } if tystate[j] == best { continue } // is tystate[j] the most frequent count := 0; cbest := tystate[j]; for k := j; k < nstate; k++ { if tystate[k] == cbest { count++ } } if count > times { best = cbest; times = count; } } // best is now the default entry zzgobest += times - 1; n := 0; for j := 0; j < nstate; j++ { if tystate[j] != 0 && tystate[j] != best { n++ } } goent := make([]int, 2*n+1); n = 0; for j := 0; j < nstate; j++ { if tystate[j] != 0 && tystate[j] != best { goent[n] = j; n++; goent[n] = tystate[j]; n++; zzgoent++; } } // now, the default if best == -1 { best = 0 } zzgoent++; goent[n] = best; yypgo[i] = goent; } } // // output the gotos for nonterminal c // func go2gen(c int) { var i, cc, p, q int; // first, find nonterminals with gotos on c aryfil(temp1, nnonter+1, 0); temp1[c] = 1; work := 1; for work != 0 { work = 0; for i = 0; i < nprod; i++ { // cc is a nonterminal with a goto on c cc = prdptr[i][1] - NTBASE; if cc >= 0 && temp1[cc] != 0 { // thus, the left side of production i does too cc = prdptr[i][0] - NTBASE; if temp1[cc] == 0 { work = 1; temp1[cc] = 1; } } } } // now, we have temp1[c] = 1 if a goto on c in closure of cc if g2debug != 0 && foutput != nil { fmt.Fprintf(foutput, "%v: gotos on ", nontrst[c].name); for i = 0; i <= nnonter; i++ { if temp1[i] != 0 { fmt.Fprintf(foutput, "%v ", nontrst[i].name) } } fmt.Fprintf(foutput, "\n"); } // now, go through and put gotos into tystate aryfil(tystate, nstate, 0); for i = 0; i < nstate; i++ { q = pstate[i+1]; for p = pstate[i]; p < q; p++ { cc = statemem[p].pitem.first; if cc >= NTBASE { // goto on c is possible if temp1[cc-NTBASE] != 0 { tystate[i] = amem[indgo[i]+c]; break; } } } } } // // in order to free up the mem and amem arrays for the optimizer, // and still be able to output yyr1, etc., after the sizes of // the action array is known, we hide the nonterminals // derived by productions in levprd. // func hideprod() { nred := 0; levprd[0] = 0; for i := 1; i < nprod; i++ { if (levprd[i] & REDFLAG) == 0 { if foutput != nil { fmt.Fprintf(foutput, "Rule not reduced: %v\n", writem(Pitem{prdptr[i], 0, 0, i})) } fmt.Printf("rule %v never reduced\n", writem(Pitem{prdptr[i], 0, 0, i})); nred++; } levprd[i] = prdptr[i][0] - NTBASE; } if nred != 0 { fmt.Printf("%v rules never reduced\n", nred) } } func callopt() { var j, k, p, q, i int; var v []int; pgo = make([]int, nnonter+1); pgo[0] = 0; maxoff = 0; maxspr = 0; for i = 0; i < nstate; i++ { k = 32000; j = 0; v = optst[i]; q = len(v); for p = 0; p < q; p += 2 { if v[p] > j { j = v[p] } if v[p] < k { k = v[p] } } // nontrivial situation if k <= j { // j is now the range // j -= k; // call scj if k > maxoff { maxoff = k } } tystate[i] = q + 2*j; if j > maxspr { maxspr = j } } // initialize ggreed table ggreed = make([]int, nnonter+1); for i = 1; i <= nnonter; i++ { ggreed[i] = 1; j = 0; // minimum entry index is always 0 v = yypgo[i]; q = len(v) - 1; for p = 0; p < q; p += 2 { ggreed[i] += 2; if v[p] > j { j = v[p] } } ggreed[i] = ggreed[i] + 2*j; if j > maxoff { maxoff = j } } // now, prepare to put the shift actions into the amem array for i = 0; i < ACTSIZE; i++ { amem[i] = 0 } maxa = 0; for i = 0; i < nstate; i++ { if tystate[i] == 0 && adb > 1 { fmt.Fprintf(ftable, "State %v: null\n", i) } indgo[i] = YYFLAG; } i = nxti(); for i != NOMORE { if i >= 0 { stin(i) } else { gin(-i) } i = nxti(); } // print amem array if adb > 2 { for p = 0; p <= maxa; p += 10 { fmt.Fprintf(ftable, "%v ", p); for i = 0; i < 10; i++ { fmt.Fprintf(ftable, "%v ", amem[p+i]) } putrune(ftable, '\n'); } } aoutput(); osummary(); } // // finds the next i // func nxti() int { max := 0; maxi := 0; for i := 1; i <= nnonter; i++ { if ggreed[i] >= max { max = ggreed[i]; maxi = -i; } } for i := 0; i < nstate; i++ { if tystate[i] >= max { max = tystate[i]; maxi = i; } } if max == 0 { return NOMORE } return maxi; } func gin(i int) { var s int; // enter gotos on nonterminal i into array amem ggreed[i] = 0; q := yypgo[i]; nq := len(q) - 1; // now, find amem place for it nextgp: for p := 0; p < ACTSIZE; p++ { if amem[p] != 0 { continue } for r := 0; r < nq; r += 2 { s = p + q[r] + 1; if s > maxa { maxa = s; if maxa >= ACTSIZE { error("a array overflow") } } if amem[s] != 0 { continue nextgp } } // we have found amem spot amem[p] = q[nq]; if p > maxa { maxa = p } for r := 0; r < nq; r += 2 { s = p + q[r] + 1; amem[s] = q[r+1]; } pgo[i] = p; if adb > 1 { fmt.Fprintf(ftable, "Nonterminal %v, entry at %v\n", i, pgo[i]) } return; } error("cannot place goto %v\n", i); } func stin(i int) { var s int; tystate[i] = 0; // enter state i into the amem array q := optst[i]; nq := len(q); nextn: // find an acceptable place for n := -maxoff; n < ACTSIZE; n++ { flag := 0; for r := 0; r < nq; r += 2 { s = q[r] + n; if s < 0 || s > ACTSIZE { continue nextn } if amem[s] == 0 { flag++ } else if amem[s] != q[r+1] { continue nextn } } // check the position equals another only if the states are identical for j := 0; j < nstate; j++ { if indgo[j] == n { // we have some disagreement if flag != 0 { continue nextn } if nq == len(optst[j]) { // states are equal indgo[i] = n; if adb > 1 { fmt.Fprintf(ftable, "State %v: entry at" "%v equals state %v\n", i, n, j) } return; } // we have some disagreement continue nextn; } } for r := 0; r < nq; r += 2 { s = q[r] + n; if s > maxa { maxa = s } if amem[s] != 0 && amem[s] != q[r+1] { error("clobber of a array, pos'n %v, by %v", s, q[r+1]) } amem[s] = q[r+1]; } indgo[i] = n; if adb > 1 { fmt.Fprintf(ftable, "State %v: entry at %v\n", i, indgo[i]) } return; } error("Error; failure to place state %v", i); } // // this version is for limbo // write out the optimized parser // func aoutput() { fmt.Fprintf(ftable, "const\tYYLAST\t= %v\n", maxa+1); arout("YYACT", amem, maxa+1); arout("YYPACT", indgo, nstate); arout("YYPGO", pgo, nnonter+1); } // // put out other arrays, copy the parsers // func others() { var i, j int; arout("YYR1", levprd, nprod); aryfil(temp1, nprod, 0); // //yyr2 is the number of rules for each production // for i = 1; i < nprod; i++ { temp1[i] = len(prdptr[i]) - 2 } arout("YYR2", temp1, nprod); aryfil(temp1, nstate, -1000); for i = 0; i <= ntokens; i++ { for j := tstates[i]; j != 0; j = mstates[j] { temp1[j] = i } } for i = 0; i <= nnonter; i++ { for j = ntstates[i]; j != 0; j = mstates[j] { temp1[j] = -i } } arout("YYCHK", temp1, nstate); arout("YYDEF", defact, nstate); // put out token translation tables // table 1 has 0-256 aryfil(temp1, 256, 0); c := 0; for i = 1; i <= ntokens; i++ { j = tokset[i].value; if j >= 0 && j < 256 { if temp1[j] != 0 { print("yacc bug -- cant have 2 different Ts with same value\n"); print(" %s and %s\n", tokset[i].name, tokset[temp1[j]].name); nerrors++; } temp1[j] = i; if j > c { c = j } } } for i = 0; i <= c; i++ { if temp1[i] == 0 { temp1[i] = YYLEXUNK } } arout("YYTOK1", temp1, c+1); // table 2 has PRIVATE-PRIVATE+256 aryfil(temp1, 256, 0); c = 0; for i = 1; i <= ntokens; i++ { j = tokset[i].value - PRIVATE; if j >= 0 && j < 256 { if temp1[j] != 0 { print("yacc bug -- cant have 2 different Ts with same value\n"); print(" %s and %s\n", tokset[i].name, tokset[temp1[j]].name); nerrors++; } temp1[j] = i; if j > c { c = j } } } arout("YYTOK2", temp1, c+1); // table 3 has everything else fmt.Fprintf(ftable, "var\tYYTOK3\t= []int {\n"); c = 0; for i = 1; i <= ntokens; i++ { j = tokset[i].value; if j >= 0 && j < 256 { continue } if j >= PRIVATE && j < 256+PRIVATE { continue } fmt.Fprintf(ftable, "%4d,%4d,", j, i); c++; if c%5 == 0 { putrune(ftable, '\n') } } fmt.Fprintf(ftable, "%4d\n };\n", 0); // copy parser text c = getrune(finput); for c != EOF { putrune(ftable, c); c = getrune(finput); } // copy yaccpar fmt.Fprintf(ftable, "%v", yaccpar); } func arout(s string, v []int, n int) { fmt.Fprintf(ftable, "var\t%v\t= []int {\n", s); for i := 0; i < n; i++ { if i%10 == 0 { putrune(ftable, '\n') } fmt.Fprintf(ftable, "%4d", v[i]); putrune(ftable, ','); } fmt.Fprintf(ftable, "\n};\n"); } // // output the summary on y.output // func summary() { if foutput != nil { fmt.Fprintf(foutput, "\n%v terminals, %v nonterminals\n", ntokens, nnonter+1); fmt.Fprintf(foutput, "%v grammar rules, %v/%v states\n", nprod, nstate, NSTATES); fmt.Fprintf(foutput, "%v shift/reduce, %v reduce/reduce conflicts reported\n", zzsrconf, zzrrconf); fmt.Fprintf(foutput, "%v working sets used\n", len(wsets)); fmt.Fprintf(foutput, "memory: parser %v/%v\n", memp, ACTSIZE); fmt.Fprintf(foutput, "%v extra closures\n", zzclose-2*nstate); fmt.Fprintf(foutput, "%v shift entries, %v exceptions\n", zzacent, zzexcp); fmt.Fprintf(foutput, "%v goto entries\n", zzgoent); fmt.Fprintf(foutput, "%v entries saved by goto default\n", zzgobest); } if zzsrconf != 0 || zzrrconf != 0 { fmt.Printf("\nconflicts: "); if zzsrconf != 0 { fmt.Printf("%v shift/reduce", zzsrconf) } if zzsrconf != 0 && zzrrconf != 0 { fmt.Printf(", ") } if zzrrconf != 0 { fmt.Printf("%v reduce/reduce", zzrrconf) } fmt.Printf("\n"); } } // // write optimizer summary // func osummary() { if foutput == nil { return } i := 0; for p := maxa; p >= 0; p-- { if amem[p] == 0 { i++ } } fmt.Fprintf(foutput, "Optimizer space used: output %v/%v\n", maxa+1, ACTSIZE); fmt.Fprintf(foutput, "%v table entries, %v zero\n", maxa+1, i); fmt.Fprintf(foutput, "maximum spread: %v, maximum offset: %v\n", maxspr, maxoff); } // // copies and protects "'s in q // func chcopy(q string) string { s := ""; i := 0; j := 0; for i = 0; i < len(q); i++ { if q[i] == '"' { s += q[j:i] + "\\"; j = i; } } return s + q[j:i]; } func usage() { fmt.Fprintf(stderr, "usage: gacc [-o output] [-v parsetable] input\n"); exit(1); } func bitset(set Lkset, bit int) int { return set[bit>>5] & (1 << uint(bit&31)) } func setbit(set Lkset, bit int) { set[bit>>5] |= (1 << uint(bit&31)) } func mkset() Lkset { return make([]int, tbitset) } // // set a to the union of a and b // return 1 if b is not a subset of a, 0 otherwise // func setunion(a, b []int) int { sub := 0; for i := 0; i < tbitset; i++ { x := a[i]; y := x | b[i]; a[i] = y; if y != x { sub = 1 } } return sub; } func prlook(p Lkset) { if p == nil { fmt.Fprintf(foutput, "\tNULL"); return; } fmt.Fprintf(foutput, " { "); for j := 0; j <= ntokens; j++ { if bitset(p, j) != 0 { fmt.Fprintf(foutput, "%v ", symnam(j)) } } fmt.Fprintf(foutput, "}"); } // // utility routines // var peekrune int func isdigit(c int) bool { return c >= '0' && c <= '9' } func isword(c int) bool { return c >= 0xa0 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') } func mktemp(t string) string { return t } // // return 1 if 2 arrays are equal // return 0 if not equal // func aryeq(a []int, b []int) int { n := len(a); if len(b) != n { return 0 } for ll := 0; ll < n; ll++ { if a[ll] != b[ll] { return 0 } } return 1; } func putrune(f *bufio.Writer, c int) { s := string(c); for i := 0; i < len(s); i++ { f.WriteByte(s[i]) } } func getrune(f *bufio.Reader) int { var r int; if peekrune != 0 { if peekrune == EOF { return EOF } r = peekrune; peekrune = 0; return r; } c, n, err := f.ReadRune(); if n == 0 { return EOF } if err != nil { error("read error: %v", err) } //fmt.Printf("rune = %v n=%v\n", string(c), n); return c; } func ungetrune(f *bufio.Reader, c int) { if f != finput { panic("ungetc - not finput") } if peekrune != 0 { panic("ungetc - 2nd unget") } peekrune = c; } func write(f *bufio.Writer, b []byte, n int) int { println("write"); return 0; } func open(s string) *bufio.Reader { fi, err := os.Open(s, os.O_RDONLY, 0); if err != nil { error("error opening %v: %v", s, err) } //fmt.Printf("open %v\n", s); return bufio.NewReader(fi); } func create(s string, m int) *bufio.Writer { fo, err := os.Open(s, os.O_WRONLY|os.O_CREAT|os.O_TRUNC, m); if err != nil { error("error opening %v: %v", s, err) } //fmt.Printf("create %v mode %v\n", s, m); return bufio.NewWriter(fo); } // // write out error comment // func error(s string, v ...) { nerrors++; fmt.Fprintf(stderr, s, v); fmt.Fprintf(stderr, ": %v:%v\n", infile, lineno); if fatfl != 0 { summary(); exit(1); } } func exit(status int) { if ftable != nil { ftable.Flush(); ftable = nil; } if foutput != nil { foutput.Flush(); foutput = nil; } if stderr != nil { stderr.Flush(); stderr = nil; } os.Exit(status); } var yaccpar = // from here to the end of the file is // a single string containing the old yaccpar file ` /* parser for yacc output */ var Nerrs = 0 /* number of errors */ var Errflag = 0 /* error recovery flag */ var Debug = 0 const YYFLAG = -1000 func Tokname(yyc int) string { if yyc > 0 && yyc <= len(Toknames) { if Toknames[yyc-1] != "" { return Toknames[yyc-1]; } } return fmt.Sprintf("tok-%v", yyc); } func Statname(yys int) string { if yys >= 0 && yys < len(Statenames) { if Statenames[yys] != "" { return Statenames[yys]; } } return fmt.Sprintf("state-%v", yys); } func lex1() int { var yychar int; var c int; yychar = Lex(); if yychar <= 0 { c = YYTOK1[0]; goto out; } if yychar < len(YYTOK1) { c = YYTOK1[yychar]; goto out; } if yychar >= YYPRIVATE { if yychar < YYPRIVATE+len(YYTOK2) { c = YYTOK2[yychar-YYPRIVATE]; goto out; } } for i:=0; i= 3 { fmt.Printf("lex %.4lux %s\n", yychar, Tokname(c)); } return c; } func Parse() int { var yyj, yystate, yyn, yyg, yyxi, yyp int; var yychar int; var yypt, yynt int; yystate = 0; yychar = -1; Nerrs = 0; Errflag = 0; yyp = -1; goto yystack; ret0: return 0; ret1: return 1; yystack: /* put a state and value onto the stack */ if Debug >= 4 { fmt.Printf("char %v in %v", Tokname(yychar), Statname(yystate)); } yyp++; if yyp >= len(YYS) { Error("yacc stack overflow"); goto ret1; } YYS[yyp] = YYVAL; YYS[yyp].yys = yystate; yynewstate: yyn = YYPACT[yystate]; if yyn <= YYFLAG { goto yydefault; /* simple state */ } if yychar < 0 { yychar = lex1(); } yyn += yychar; if yyn < 0 || yyn >= YYLAST { goto yydefault; } yyn = YYACT[yyn]; if YYCHK[yyn] == yychar { /* valid shift */ yychar = -1; YYVAL = yylval; yystate = yyn; if Errflag > 0 { Errflag--; } goto yystack; } yydefault: /* default state action */ yyn = YYDEF[yystate]; if yyn == -2 { if yychar < 0 { yychar = lex1(); } /* look through exception table */ for yyxi=0;; yyxi+=2 { if YYEXCA[yyxi+0] == -1 && YYEXCA[yyxi+1] == yystate { break; } } for yyxi += 2;; yyxi += 2 { yyn = YYEXCA[yyxi+0]; if yyn < 0 || yyn == yychar { break; } } yyn = YYEXCA[yyxi+1]; if yyn < 0 { goto ret0; } } if yyn == 0 { /* error ... attempt to resume parsing */ switch Errflag { case 0: /* brand new error */ Error("syntax error"); Nerrs++; if Debug >= 1 { fmt.Printf("%s", Statname(yystate)); fmt.Printf("saw %s\n", Tokname(yychar)); } fallthrough; case 1,2: /* incompletely recovered error ... try again */ Errflag = 3; /* find a state where "error" is a legal shift action */ for yyp >= len(YYS) { yyn = YYPACT[YYS[yyp].yys] + YYERRCODE; if yyn >= 0 && yyn < YYLAST { yystate = YYACT[yyn]; /* simulate a shift of "error" */ if YYCHK[yystate] == YYERRCODE { goto yystack; } } /* the current yyp has no shift onn "error", pop stack */ if Debug >= 2 { fmt.Printf("error recovery pops state %d, uncovers %d\n", YYS[yyp].yys, YYS[yyp-1].yys ); } yyp--; } /* there is no state on the stack with an error shift ... abort */ goto ret1; case 3: /* no shift yet; clobber input char */ if Debug >= 2 { fmt.Printf("error recovery discards %s\n", Tokname(yychar)); } if yychar == YYEOFCODE { goto ret1; } yychar = -1; goto yynewstate; /* try again in the same state */ } } /* reduction by production yyn */ if Debug >= 2 { fmt.Printf("reduce %v in:\n\t%v", yyn, Statname(yystate)); } yynt = yyn; yypt = yyp; yyp -= YYR2[yyn]; YYVAL = YYS[yyp+1]; /* consult goto table to find next state */ yyn = YYR1[yyn]; yyg = YYPGO[yyn]; yyj = yyg + YYS[yyp].yys + 1; if yyj >= YYLAST { yystate = YYACT[yyg]; } else { yystate = YYACT[yyj]; if YYCHK[yystate] != -yyn { yystate = YYACT[yyg]; } } yyrun(yynt, yypt); goto yystack; /* stack new state and value */ } `