// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements signed multi-precision integers. package big // An Int represents a signed multi-precision integer. // The zero value for an Int represents the value 0. type Int struct { neg bool; // sign abs []Word; // absolute value of the integer } // New allocates and returns a new Int set to x. func (z *Int) New(x int64) *Int { z.neg = false; if x < 0 { z.neg = true; x = -x; } z.abs = newN(z.abs, uint64(x)); return z; } // NewInt allocates and returns a new Int set to x. func NewInt(x int64) *Int { return new(Int).New(x) } // Set sets z to x. func (z *Int) Set(x *Int) *Int { z.neg = x.neg; z.abs = setN(z.abs, x.abs); return z; } // Add computes z = x+y. func (z *Int) Add(x, y *Int) *Int { if x.neg == y.neg { // x + y == x + y // (-x) + (-y) == -(x + y) z.neg = x.neg; z.abs = addNN(z.abs, x.abs, y.abs); } else { // x + (-y) == x - y == -(y - x) // (-x) + y == y - x == -(x - y) if cmpNN(x.abs, y.abs) >= 0 { z.neg = x.neg; z.abs = subNN(z.abs, x.abs, y.abs); } else { z.neg = !x.neg; z.abs = subNN(z.abs, y.abs, x.abs); } } if len(z.abs) == 0 { z.neg = false // 0 has no sign } return z; } // Sub computes z = x-y. func (z *Int) Sub(x, y *Int) *Int { if x.neg != y.neg { // x - (-y) == x + y // (-x) - y == -(x + y) z.neg = x.neg; z.abs = addNN(z.abs, x.abs, y.abs); } else { // x - y == x - y == -(y - x) // (-x) - (-y) == y - x == -(x - y) if cmpNN(x.abs, y.abs) >= 0 { z.neg = x.neg; z.abs = subNN(z.abs, x.abs, y.abs); } else { z.neg = !x.neg; z.abs = subNN(z.abs, y.abs, x.abs); } } if len(z.abs) == 0 { z.neg = false // 0 has no sign } return z; } // Mul computes z = x*y. func (z *Int) Mul(x, y *Int) *Int { // x * y == x * y // x * (-y) == -(x * y) // (-x) * y == -(x * y) // (-x) * (-y) == x * y z.abs = mulNN(z.abs, x.abs, y.abs); z.neg = len(z.abs) > 0 && x.neg != y.neg; // 0 has no sign return z; } // Div calculates q = (x-r)/y where 0 <= r < y. The receiver is set to q. func (z *Int) Div(x, y *Int) (q, r *Int) { q = z; r = new(Int); div(q, r, x, y); return; } // Mod calculates q = (x-r)/y and returns r. func (z *Int) Mod(x, y *Int) (r *Int) { q := new(Int); r = z; div(q, r, x, y); return; } func div(q, r, x, y *Int) { q.neg = x.neg != y.neg; r.neg = x.neg; q.abs, r.abs = divNN(q.abs, r.abs, x.abs, y.abs); return; } // Neg computes z = -x. func (z *Int) Neg(x *Int) *Int { z.abs = setN(z.abs, x.abs); z.neg = len(z.abs) > 0 && !x.neg; // 0 has no sign return z; } // Cmp compares x and y. The result is // // -1 if x < y // 0 if x == y // +1 if x > y // func (x *Int) Cmp(y *Int) (r int) { // x cmp y == x cmp y // x cmp (-y) == x // (-x) cmp y == y // (-x) cmp (-y) == -(x cmp y) switch { case x.neg == y.neg: r = cmpNN(x.abs, y.abs); if x.neg { r = -r } case x.neg: r = -1 default: r = 1 } return; } func (z *Int) String() string { s := ""; if z.neg { s = "-" } return s + stringN(z.abs, 10); } // SetString sets z to the value of s, interpreted in the given base. // If base is 0 then SetString attempts to detect the base by at the prefix of // s. '0x' implies base 16, '0' implies base 8. Otherwise base 10 is assumed. func (z *Int) SetString(s string, base int) (*Int, bool) { var scanned int; if base == 1 || base > 16 { goto Error } if len(s) == 0 { goto Error } if s[0] == '-' { z.neg = true; s = s[1:]; } else { z.neg = false } z.abs, _, scanned = scanN(z.abs, s, base); if scanned != len(s) { goto Error } return z, true; Error: z.neg = false; z.abs = nil; return nil, false; } // SetBytes interprets b as the bytes of a big-endian, unsigned integer and // sets x to that value. func (z *Int) SetBytes(b []byte) *Int { s := int(_S); z.abs = makeN(z.abs, (len(b)+s-1)/s, false); z.neg = false; j := 0; for len(b) >= s { var w Word; for i := s; i > 0; i-- { w <<= 8; w |= Word(b[len(b)-i]); } z.abs[j] = w; j++; b = b[0 : len(b)-s]; } if len(b) > 0 { var w Word; for i := len(b); i > 0; i-- { w <<= 8; w |= Word(b[len(b)-i]); } z.abs[j] = w; } z.abs = normN(z.abs); return z; } // Bytes returns the absolute value of x as a big-endian byte array. func (z *Int) Bytes() []byte { s := int(_S); b := make([]byte, len(z.abs)*s); for i, w := range z.abs { wordBytes := b[(len(z.abs)-i-1)*s : (len(z.abs)-i)*s]; for j := s - 1; j >= 0; j-- { wordBytes[j] = byte(w); w >>= 8; } } i := 0; for i < len(b) && b[i] == 0 { i++ } return b[i:]; } // Len returns the length of the absolute value of x in bits. Zero is // considered to have a length of one. func (z *Int) Len() int { if len(z.abs) == 0 { return 0 } return len(z.abs)*_W - int(leadingZeros(z.abs[len(z.abs)-1])); } // Exp sets z = x**y mod m. If m is nil, z = x**y. // See Knuth, volume 2, section 4.6.3. func (z *Int) Exp(x, y, m *Int) *Int { if y.neg || len(y.abs) == 0 { z.New(1); z.neg = x.neg; return z; } var mWords []Word; if m != nil { mWords = m.abs } z.abs = expNNN(z.abs, x.abs, y.abs, mWords); z.neg = x.neg && y.abs[0]&1 == 1; return z; } // GcdInt sets d to the greatest common divisor of a and b, which must be // positive numbers. // If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y. // If either a or b is not positive, GcdInt sets d = x = y = 0. func GcdInt(d, x, y, a, b *Int) { if a.neg || b.neg { d.New(0); if x != nil { x.New(0) } if y != nil { y.New(0) } return; } A := new(Int).Set(a); B := new(Int).Set(b); X := new(Int); Y := new(Int).New(1); lastX := new(Int).New(1); lastY := new(Int); q := new(Int); temp := new(Int); for len(B.abs) > 0 { q, r := q.Div(A, B); A, B = B, r; temp.Set(X); X.Mul(X, q); X.neg = !X.neg; X.Add(X, lastX); lastX.Set(temp); temp.Set(Y); Y.Mul(Y, q); Y.neg = !Y.neg; Y.Add(Y, lastY); lastY.Set(temp); } if x != nil { *x = *lastX } if y != nil { *y = *lastY } *d = *A; } // ProbablyPrime performs n Miller-Rabin tests to check whether z is prime. // If it returns true, z is prime with probability 1 - 1/4^n. // If it returns false, z is not prime. func ProbablyPrime(z *Int, reps int) bool { return !z.neg && probablyPrime(z.abs, reps) } // Rsh sets z = x >> s and returns z. func (z *Int) Rsh(x *Int, n int) *Int { removedWords := n / _W; z.abs = makeN(z.abs, len(x.abs)-removedWords, false); z.neg = x.neg; shiftRight(z.abs, x.abs[removedWords:], n%_W); z.abs = normN(z.abs); return z; }