// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file contains operations on unsigned multi-precision integers. // These are the building blocks for the operations on signed integers // and rationals. // This package implements multi-precision arithmetic (big numbers). // The following numeric types are supported: // // - Int signed integers // // All methods on Int take the result as the receiver; if it is one // of the operands it may be overwritten (and its memory reused). // To enable chaining of operations, the result is also returned. // // If possible, one should use big over bignum as the latter is headed for // deprecation. // package big import "rand" // An unsigned integer x of the form // // x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] // // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, // with the digits x[i] as the slice elements. // // A number is normalized if the slice contains no leading 0 digits. // During arithmetic operations, denormalized values may occur but are // always normalized before returning the final result. The normalized // representation of 0 is the empty or nil slice (length = 0). // TODO(gri) - convert these routines into methods for type 'nat' // - decide if type 'nat' should be exported func normN(z []Word) []Word { i := len(z); for i > 0 && z[i-1] == 0 { i-- } z = z[0:i]; return z; } func makeN(z []Word, m int, clear bool) []Word { if len(z) > m { z = z[0:m]; // reuse z - has at least one extra word for a carry, if any if clear { for i := range z { z[i] = 0 } } return z; } c := 4; // minimum capacity if m > c { c = m } return make([]Word, m, c+1); // +1: extra word for a carry, if any } func newN(z []Word, x uint64) []Word { if x == 0 { return makeN(z, 0, false) } // single-digit values if x == uint64(Word(x)) { z = makeN(z, 1, false); z[0] = Word(x); return z; } // compute number of words n required to represent x n := 0; for t := x; t > 0; t >>= _W { n++ } // split x into n words z = makeN(z, n, false); for i := 0; i < n; i++ { z[i] = Word(x & _M); x >>= _W; } return z; } func setN(z, x []Word) []Word { z = makeN(z, len(x), false); for i, d := range x { z[i] = d } return z; } func addNN(z, x, y []Word) []Word { m := len(x); n := len(y); switch { case m < n: return addNN(z, y, x) case m == 0: // n == 0 because m >= n; result is 0 return makeN(z, 0, false) case n == 0: // result is x return setN(z, x) } // m > 0 z = makeN(z, m, false); c := addVV(&z[0], &x[0], &y[0], n); if m > n { c = addVW(&z[n], &x[n], c, m-n) } if c > 0 { z = z[0 : m+1]; z[m] = c; } return z; } func subNN(z, x, y []Word) []Word { m := len(x); n := len(y); switch { case m < n: panic("underflow") case m == 0: // n == 0 because m >= n; result is 0 return makeN(z, 0, false) case n == 0: // result is x return setN(z, x) } // m > 0 z = makeN(z, m, false); c := subVV(&z[0], &x[0], &y[0], n); if m > n { c = subVW(&z[n], &x[n], c, m-n) } if c != 0 { panic("underflow") } z = normN(z); return z; } func cmpNN(x, y []Word) (r int) { m := len(x); n := len(y); if m != n || m == 0 { switch { case m < n: r = -1 case m > n: r = 1 } return; } i := m - 1; for i > 0 && x[i] == y[i] { i-- } switch { case x[i] < y[i]: r = -1 case x[i] > y[i]: r = 1 } return; } func mulAddNWW(z, x []Word, y, r Word) []Word { m := len(x); if m == 0 || y == 0 { return newN(z, uint64(r)) // result is r } // m > 0 z = makeN(z, m, false); c := mulAddVWW(&z[0], &x[0], y, r, m); if c > 0 { z = z[0 : m+1]; z[m] = c; } return z; } func mulNN(z, x, y []Word) []Word { m := len(x); n := len(y); switch { case m < n: return mulNN(z, y, x) case m == 0 || n == 0: return makeN(z, 0, false) case n == 1: return mulAddNWW(z, x, y[0], 0) } // m >= n && m > 1 && n > 1 z = makeN(z, m+n, true); if &z[0] == &x[0] || &z[0] == &y[0] { z = makeN(nil, m+n, true) // z is an alias for x or y - cannot reuse } for i := 0; i < n; i++ { if f := y[i]; f != 0 { z[m+i] = addMulVVW(&z[i], &x[0], f, m) } } z = normN(z); return z; } // q = (x-r)/y, with 0 <= r < y func divNW(z, x []Word, y Word) (q []Word, r Word) { m := len(x); switch { case y == 0: panic("division by zero") case y == 1: q = setN(z, x); // result is x return; case m == 0: q = setN(z, nil); // result is 0 return; } // m > 0 z = makeN(z, m, false); r = divWVW(&z[0], 0, &x[0], y, m); q = normN(z); return; } func divNN(z, z2, u, v []Word) (q, r []Word) { if len(v) == 0 { panic("Divide by zero undefined") } if cmpNN(u, v) < 0 { q = makeN(z, 0, false); r = setN(z2, u); return; } if len(v) == 1 { var rprime Word; q, rprime = divNW(z, u, v[0]); if rprime > 0 { r = makeN(z2, 1, false); r[0] = rprime; } else { r = makeN(z2, 0, false) } return; } q, r = divLargeNN(z, z2, u, v); return; } // q = (uIn-r)/v, with 0 <= r < y // See Knuth, Volume 2, section 4.3.1, Algorithm D. // Preconditions: // len(v) >= 2 // len(uIn) >= len(v) func divLargeNN(z, z2, uIn, v []Word) (q, r []Word) { n := len(v); m := len(uIn) - len(v); u := makeN(z2, len(uIn)+1, false); qhatv := make([]Word, len(v)+1); q = makeN(z, m+1, false); // D1. shift := leadingZeroBits(v[n-1]); shiftLeft(v, v, shift); shiftLeft(u, uIn, shift); u[len(uIn)] = uIn[len(uIn)-1] >> (_W - uint(shift)); // D2. for j := m; j >= 0; j-- { // D3. var qhat Word; if u[j+n] == v[n-1] { qhat = _B - 1 } else { var rhat Word; qhat, rhat = divWW_g(u[j+n], u[j+n-1], v[n-1]); // x1 | x2 = q̂v_{n-2} x1, x2 := mulWW_g(qhat, v[n-2]); // test if q̂v_{n-2} > br̂ + u_{j+n-2} for greaterThan(x1, x2, rhat, u[j+n-2]) { qhat--; prevRhat := rhat; rhat += v[n-1]; // v[n-1] >= 0, so this tests for overflow. if rhat < prevRhat { break } x1, x2 = mulWW_g(qhat, v[n-2]); } } // D4. qhatv[len(v)] = mulAddVWW(&qhatv[0], &v[0], qhat, 0, len(v)); c := subVV(&u[j], &u[j], &qhatv[0], len(qhatv)); if c != 0 { c := addVV(&u[j], &u[j], &v[0], len(v)); u[j+len(v)] += c; qhat--; } q[j] = qhat; } q = normN(q); shiftRight(u, u, shift); shiftRight(v, v, shift); r = normN(u); return q, r; } // log2 computes the integer binary logarithm of x. // The result is the integer n for which 2^n <= x < 2^(n+1). // If x == 0, the result is -1. func log2(x Word) int { n := 0; for ; x > 0; x >>= 1 { n++ } return n - 1; } // log2N computes the integer binary logarithm of x. // The result is the integer n for which 2^n <= x < 2^(n+1). // If x == 0, the result is -1. func log2N(x []Word) int { m := len(x); if m > 0 { return (m-1)*_W + log2(x[m-1]) } return -1; } func hexValue(ch byte) int { var d byte; switch { case '0' <= ch && ch <= '9': d = ch - '0' case 'a' <= ch && ch <= 'f': d = ch - 'a' + 10 case 'A' <= ch && ch <= 'F': d = ch - 'A' + 10 default: return -1 } return int(d); } // scanN returns the natural number corresponding to the // longest possible prefix of s representing a natural number in a // given conversion base, the actual conversion base used, and the // prefix length. The syntax of natural numbers follows the syntax // of unsigned integer literals in Go. // // If the base argument is 0, the string prefix determines the actual // conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the // ``0'' prefix selects base 8. Otherwise the selected base is 10. // func scanN(z []Word, s string, base int) ([]Word, int, int) { // determine base if necessary i, n := 0, len(s); if base == 0 { base = 10; if n > 0 && s[0] == '0' { if n > 1 && (s[1] == 'x' || s[1] == 'X') { if n == 2 { // Reject a string which is just '0x' as nonsense. return nil, 0, 0 } base, i = 16, 2; } else { base, i = 8, 1 } } } if base < 2 || 16 < base { panic("illegal base") } // convert string z = makeN(z, len(z), false); for ; i < n; i++ { d := hexValue(s[i]); if 0 <= d && d < base { z = mulAddNWW(z, z, Word(base), Word(d)) } else { break } } return z, base, i; } // string converts x to a string for a given base, with 2 <= base <= 16. // TODO(gri) in the style of the other routines, perhaps this should take // a []byte buffer and return it func stringN(x []Word, base int) string { if base < 2 || 16 < base { panic("illegal base") } if len(x) == 0 { return "0" } // allocate buffer for conversion i := (log2N(x)+1)/log2(Word(base)) + 1; // +1: round up s := make([]byte, i); // don't destroy x q := setN(nil, x); // convert for len(q) > 0 { i--; var r Word; q, r = divNW(q, q, Word(base)); s[i] = "0123456789abcdef"[r]; } return string(s[i:]); } // leadingZeroBits returns the number of leading zero bits in x. func leadingZeroBits(x Word) int { c := 0; if x < 1<<(_W/2) { x <<= _W / 2; c = _W / 2; } for i := 0; x != 0; i++ { if x&(1<<(_W-1)) != 0 { return i + c } x <<= 1; } return _W; } const deBruijn32 = 0x077CB531 var deBruijn32Lookup = []byte{ 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, } const deBruijn64 = 0x03f79d71b4ca8b09 var deBruijn64Lookup = []byte{ 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, } // trailingZeroBits returns the number of consecutive zero bits on the right // side of the given Word. // See Knuth, volume 4, section 7.3.1 func trailingZeroBits(x Word) int { // x & -x leaves only the right-most bit set in the word. Let k be the // index of that bit. Since only a single bit is set, the value is two // to the power of k. Multipling by a power of two is equivalent to // left shifting, in this case by k bits. The de Bruijn constant is // such that all six bit, consecutive substrings are distinct. // Therefore, if we have a left shifted version of this constant we can // find by how many bits it was shifted by looking at which six bit // substring ended up at the top of the word. switch _W { case 32: return int(deBruijn32Lookup[((x&-x)*deBruijn32)>>27]) case 64: return int(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58]) default: panic("Unknown word size") } return 0; } func shiftLeft(dst, src []Word, n int) { if len(src) == 0 { return } ñ := _W - uint(n); for i := len(src) - 1; i >= 1; i-- { dst[i] = src[i] << uint(n); dst[i] |= src[i-1] >> ñ; } dst[0] = src[0] << uint(n); } func shiftRight(dst, src []Word, n int) { if len(src) == 0 { return } ñ := _W - uint(n); for i := 0; i < len(src)-1; i++ { dst[i] = src[i] >> uint(n); dst[i] |= src[i+1] << ñ; } dst[len(src)-1] = src[len(src)-1] >> uint(n); } // greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2) func greaterThan(x1, x2, y1, y2 Word) bool { return x1 > y1 || x1 == y1 && x2 > y2 } // modNW returns x % d. func modNW(x []Word, d Word) (r Word) { // TODO(agl): we don't actually need to store the q value. q := makeN(nil, len(x), false); return divWVW(&q[0], 0, &x[0], d, len(x)); } // powersOfTwoDecompose finds q and k such that q * 1<= 0; i-- { v = y[i]; for j := 0; j < _W; j++ { z = mulNN(z, z, z); if v&mask != 0 { z = mulNN(z, z, x) } if m != nil { q, z = divNN(q, z, z, m) } v <<= 1; } } return z; } // lenN returns the bit length of z. func lenN(z []Word) int { if len(z) == 0 { return 0 } return (len(z)-1)*_W + (_W - leadingZeroBits(z[len(z)-1])); } const ( primesProduct32 = 0xC0CFD797; // Π {p ∈ primes, 2 < p <= 29} primesProduct64 = 0xE221F97C30E94E1D; // Π {p ∈ primes, 2 < p <= 53} ) var bigOne = []Word{1} var bigTwo = []Word{2} // ProbablyPrime performs n Miller-Rabin tests to check whether n is prime. // If it returns true, n is prime with probability 1 - 1/4^n. // If it returns false, n is not prime. func probablyPrime(n []Word, reps int) bool { if len(n) == 0 { return false } if len(n) == 1 { if n[0]%2 == 0 { return n[0] == 2 } // We have to exclude these cases because we reject all // multiples of these numbers below. if n[0] == 3 || n[0] == 5 || n[0] == 7 || n[0] == 11 || n[0] == 13 || n[0] == 17 || n[0] == 19 || n[0] == 23 || n[0] == 29 || n[0] == 31 || n[0] == 37 || n[0] == 41 || n[0] == 43 || n[0] == 47 || n[0] == 53 { return true } } var r Word; switch _W { case 32: r = modNW(n, primesProduct32) case 64: r = modNW(n, primesProduct64&_M) default: panic("Unknown word size") } if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 || r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 { return false } if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 || r%43 == 0 || r%47 == 0 || r%53 == 0) { return false } nm1 := subNN(nil, n, bigOne); // 1<