// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Rational numbers package bignum import "fmt" // Rational represents a quotient a/b of arbitrary precision. // type Rational struct { a *Integer; // numerator b Natural; // denominator } // MakeRat makes a rational number given a numerator a and a denominator b. // func MakeRat(a *Integer, b Natural) *Rational { f := a.mant.Gcd(b); // f > 0 if f.Cmp(Nat(1)) != 0 { a = MakeInt(a.sign, a.mant.Div(f)); b = b.Div(f); } return &Rational{a, b}; } // Rat creates a small rational number with value a0/b0. // func Rat(a0 int64, b0 int64) *Rational { a, b := Int(a0), Int(b0); if b.sign { a = a.Neg() } return MakeRat(a, b.mant); } // Value returns the numerator and denominator of x. // func (x *Rational) Value() (numerator *Integer, denominator Natural) { return x.a, x.b } // Predicates // IsZero returns true iff x == 0. // func (x *Rational) IsZero() bool { return x.a.IsZero() } // IsNeg returns true iff x < 0. // func (x *Rational) IsNeg() bool { return x.a.IsNeg() } // IsPos returns true iff x > 0. // func (x *Rational) IsPos() bool { return x.a.IsPos() } // IsInt returns true iff x can be written with a denominator 1 // in the form x == x'/1; i.e., if x is an integer value. // func (x *Rational) IsInt() bool { return x.b.Cmp(Nat(1)) == 0 } // Operations // Neg returns the negated value of x. // func (x *Rational) Neg() *Rational { return MakeRat(x.a.Neg(), x.b) } // Add returns the sum x + y. // func (x *Rational) Add(y *Rational) *Rational { return MakeRat((x.a.MulNat(y.b)).Add(y.a.MulNat(x.b)), x.b.Mul(y.b)) } // Sub returns the difference x - y. // func (x *Rational) Sub(y *Rational) *Rational { return MakeRat((x.a.MulNat(y.b)).Sub(y.a.MulNat(x.b)), x.b.Mul(y.b)) } // Mul returns the product x * y. // func (x *Rational) Mul(y *Rational) *Rational { return MakeRat(x.a.Mul(y.a), x.b.Mul(y.b)) } // Quo returns the quotient x / y for y != 0. // If y == 0, a division-by-zero run-time error occurs. // func (x *Rational) Quo(y *Rational) *Rational { a := x.a.MulNat(y.b); b := y.a.MulNat(x.b); if b.IsNeg() { a = a.Neg() } return MakeRat(a, b.mant); } // Cmp compares x and y. The result is an int value // // < 0 if x < y // == 0 if x == y // > 0 if x > y // func (x *Rational) Cmp(y *Rational) int { return (x.a.MulNat(y.b)).Cmp(y.a.MulNat(x.b)) } // ToString converts x to a string for a given base, with 2 <= base <= 16. // The string representation is of the form "n" if x is an integer; otherwise // it is of form "n/d". // func (x *Rational) ToString(base uint) string { s := x.a.ToString(base); if !x.IsInt() { s += "/" + x.b.ToString(base) } return s; } // String converts x to its decimal string representation. // x.String() is the same as x.ToString(10). // func (x *Rational) String() string { return x.ToString(10) } // Format is a support routine for fmt.Formatter. It accepts // the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal). // func (x *Rational) Format(h fmt.State, c int) { fmt.Fprintf(h, "%s", x.ToString(fmtbase(c))) } // RatFromString returns the rational number corresponding to the // longest possible prefix of s representing a rational number in a // given conversion base, the actual conversion base used, and the // prefix length. The syntax of a rational number is: // // rational = mantissa [exponent] . // mantissa = integer ('/' natural | '.' natural) . // exponent = ('e'|'E') integer . // // If the base argument is 0, the string prefix determines the actual // conversion base for the mantissa. A prefix of ``0x'' or ``0X'' selects // base 16; the ``0'' prefix selects base 8. Otherwise the selected base is 10. // If the mantissa is represented via a division, both the numerator and // denominator may have different base prefixes; in that case the base of // of the numerator is returned. If the mantissa contains a decimal point, // the base for the fractional part is the same as for the part before the // decimal point and the fractional part does not accept a base prefix. // The base for the exponent is always 10. // func RatFromString(s string, base uint) (*Rational, uint, int) { // read numerator a, abase, alen := IntFromString(s, base); b := Nat(1); // read denominator or fraction, if any var blen int; if alen < len(s) { ch := s[alen]; if ch == '/' { alen++; b, base, blen = NatFromString(s[alen:], base); } else if ch == '.' { alen++; b, base, blen = NatFromString(s[alen:], abase); assert(base == abase); f := Nat(uint64(base)).Pow(uint(blen)); a = MakeInt(a.sign, a.mant.Mul(f).Add(b)); b = f; } } // read exponent, if any rlen := alen + blen; if rlen < len(s) { ch := s[rlen]; if ch == 'e' || ch == 'E' { rlen++; e, _, elen := IntFromString(s[rlen:], 10); rlen += elen; m := Nat(10).Pow(uint(e.mant.Value())); if e.sign { b = b.Mul(m) } else { a = a.MulNat(m) } } } return MakeRat(a, b), base, rlen; }