// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package flate import ( "io"; "math"; "os"; "strconv"; ) const ( // The largest offset code. offsetCodeCount = 30; // The largest offset code in the extensions. extendedOffsetCodeCount = 42; // The special code used to mark the end of a block. endBlockMarker = 256; // The first length code. lengthCodesStart = 257; // The number of codegen codes. codegenCodeCount = 19; badCode = 255; ) // The number of extra bits needed by length code X - LENGTH_CODES_START. var lengthExtraBits = []int8{ /* 257 */ 0, 0, 0, /* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, /* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, /* 280 */ 4, 5, 5, 5, 5, 0, } // The length indicated by length code X - LENGTH_CODES_START. var lengthBase = []uint32{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 255, } // offset code word extra bits. var offsetExtraBits = []int8{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* extended window */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, } var offsetBase = []uint32{ /* normal deflate */ 0x000000, 0x000001, 0x000002, 0x000003, 0x000004, 0x000006, 0x000008, 0x00000c, 0x000010, 0x000018, 0x000020, 0x000030, 0x000040, 0x000060, 0x000080, 0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300, 0x000400, 0x000600, 0x000800, 0x000c00, 0x001000, 0x001800, 0x002000, 0x003000, 0x004000, 0x006000, /* extended window */ 0x008000, 0x00c000, 0x010000, 0x018000, 0x020000, 0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000, 0x100000, 0x180000, 0x200000, 0x300000, } // The odd order in which the codegen code sizes are written. var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15} type huffmanBitWriter struct { w io.Writer; // Data waiting to be written is bytes[0:nbytes] // and then the low nbits of bits. bits uint32; nbits uint32; bytes [64]byte; nbytes int; literalFreq []int32; offsetFreq []int32; codegen []uint8; codegenFreq []int32; literalEncoding *huffmanEncoder; offsetEncoding *huffmanEncoder; codegenEncoding *huffmanEncoder; err os.Error; } type WrongValueError struct { name string; from int32; to int32; value int32; } func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter { return &huffmanBitWriter{ w: w, literalFreq: make([]int32, maxLit), offsetFreq: make([]int32, extendedOffsetCodeCount), codegen: make([]uint8, maxLit+extendedOffsetCodeCount+1), codegenFreq: make([]int32, codegenCodeCount), literalEncoding: newHuffmanEncoder(maxLit), offsetEncoding: newHuffmanEncoder(extendedOffsetCodeCount), codegenEncoding: newHuffmanEncoder(codegenCodeCount), } } func (err WrongValueError) String() string { return "huffmanBitWriter: " + err.name + " should belong to [" + strconv.Itoa64(int64(err.from)) + ";" + strconv.Itoa64(int64(err.to)) + "] but actual value is " + strconv.Itoa64(int64(err.value)) } func (w *huffmanBitWriter) flushBits() { if w.err != nil { w.nbits = 0; return; } bits := w.bits; w.bits >>= 16; w.nbits -= 16; n := w.nbytes; w.bytes[n] = byte(bits); w.bytes[n+1] = byte(bits >> 8); if n += 2; n >= len(w.bytes) { _, w.err = w.w.Write(&w.bytes); n = 0; } w.nbytes = n; } func (w *huffmanBitWriter) flush() { if w.err != nil { w.nbits = 0; return; } n := w.nbytes; if w.nbits > 8 { w.bytes[n] = byte(w.bits); w.bits >>= 8; w.nbits -= 8; n++; } if w.nbits > 0 { w.bytes[n] = byte(w.bits); w.nbits = 0; n++; } w.bits = 0; _, w.err = w.w.Write(w.bytes[0:n]); w.nbytes = 0; } func (w *huffmanBitWriter) writeBits(b, nb int32) { w.bits |= uint32(b) << w.nbits; if w.nbits += uint32(nb); w.nbits >= 16 { w.flushBits() } } func (w *huffmanBitWriter) writeBytes(bytes []byte) { if w.err != nil { return } n := w.nbytes; if w.nbits == 8 { w.bytes[n] = byte(w.bits); w.nbits = 0; n++; } if w.nbits != 0 { w.err = InternalError("writeBytes with unfinished bits"); return; } if n != 0 { _, w.err = w.w.Write(w.bytes[0:n]); if w.err != nil { return } } w.nbytes = 0; _, w.err = w.w.Write(bytes); } // RFC 1951 3.2.7 specifies a special run-length encoding for specifiying // the literal and offset lengths arrays (which are concatenated into a single // array). This method generates that run-length encoding. // // The result is written into the codegen array, and the frequencies // of each code is written into the codegenFreq array. // Codes 0-15 are single byte codes. Codes 16-18 are followed by additional // information. Code badCode is an end marker // // numLiterals The number of literals in literalEncoding // numOffsets The number of offsets in offsetEncoding func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int) { fillInt32s(w.codegenFreq, 0); // Note that we are using codegen both as a temporary variable for holding // a copy of the frequencies, and as the place where we put the result. // This is fine because the output is always shorter than the input used // so far. codegen := w.codegen; // cache // Copy the concatenated code sizes to codegen. Put a marker at the end. copyUint8s(codegen[0:numLiterals], w.literalEncoding.codeBits); copyUint8s(codegen[numLiterals:numLiterals+numOffsets], w.offsetEncoding.codeBits); codegen[numLiterals+numOffsets] = badCode; size := codegen[0]; count := 1; outIndex := 0; for inIndex := 1; size != badCode; inIndex++ { // INVARIANT: We have seen "count" copies of size that have not yet // had output generated for them. nextSize := codegen[inIndex]; if nextSize == size { count++; continue; } // We need to generate codegen indicating "count" of size. if size != 0 { codegen[outIndex] = size; outIndex++; w.codegenFreq[size]++; count--; for count >= 3 { n := min(count, 6); codegen[outIndex] = 16; outIndex++; codegen[outIndex] = uint8(n - 3); outIndex++; w.codegenFreq[16]++; count -= n; } } else { for count >= 11 { n := min(count, 138); codegen[outIndex] = 18; outIndex++; codegen[outIndex] = uint8(n - 11); outIndex++; w.codegenFreq[18]++; count -= n; } if count >= 3 { // count >= 3 && count <= 10 codegen[outIndex] = 17; outIndex++; codegen[outIndex] = uint8(count - 3); outIndex++; w.codegenFreq[17]++; count = 0; } } count--; for ; count >= 0; count-- { codegen[outIndex] = size; outIndex++; w.codegenFreq[size]++; } // Set up invariant for next time through the loop. size = nextSize; count = 1; } // Marker indicating the end of the codegen. codegen[outIndex] = badCode; } func (w *huffmanBitWriter) writeCode(code *huffmanEncoder, literal uint32) { if w.err != nil { return } w.writeBits(int32(code.code[literal]), int32(code.codeBits[literal])); } // Write the header of a dynamic Huffman block to the output stream. // // numLiterals The number of literals specified in codegen // numOffsets The number of offsets specified in codegen // numCodegens Tne number of codegens used in codegen func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) { if w.err != nil { return } var firstBits int32 = 4; if isEof { firstBits = 5 } w.writeBits(firstBits, 3); w.writeBits(int32(numLiterals-257), 5); if numOffsets > offsetCodeCount { // Extended version of deflater w.writeBits(int32(offsetCodeCount+((numOffsets-(1+offsetCodeCount))>>3)), 5); w.writeBits(int32((numOffsets-(1+offsetCodeCount))&0x7), 3); } else { w.writeBits(int32(numOffsets-1), 5) } w.writeBits(int32(numCodegens-4), 4); for i := 0; i < numCodegens; i++ { value := w.codegenEncoding.codeBits[codegenOrder[i]]; w.writeBits(int32(value), 3); } i := 0; for { var codeWord int = int(w.codegen[i]); i++; if codeWord == badCode { break } // The low byte contains the actual code to generate. w.writeCode(w.codegenEncoding, uint32(codeWord)); switch codeWord { case 16: w.writeBits(int32(w.codegen[i]), 2); i++; break; case 17: w.writeBits(int32(w.codegen[i]), 3); i++; break; case 18: w.writeBits(int32(w.codegen[i]), 7); i++; break; } } } func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) { if w.err != nil { return } var flag int32; if isEof { flag = 1 } w.writeBits(flag, 3); w.flush(); w.writeBits(int32(length), 16); w.writeBits(int32(^uint16(length)), 16); } func (w *huffmanBitWriter) writeFixedHeader(isEof bool) { if w.err != nil { return } // Indicate that we are a fixed Huffman block var value int32 = 2; if isEof { value = 3 } w.writeBits(value, 3); } func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) { if w.err != nil { return } fillInt32s(w.literalFreq, 0); fillInt32s(w.offsetFreq, 0); n := len(tokens); tokens = tokens[0 : n+1]; tokens[n] = endBlockMarker; totalLength := -1; // Subtract 1 for endBlock. for _, t := range tokens { switch t.typ() { case literalType: w.literalFreq[t.literal()]++; totalLength++; break; case matchType: length := t.length(); offset := t.offset(); totalLength += int(length + 3); w.literalFreq[lengthCodesStart+lengthCode(length)]++; w.offsetFreq[offsetCode(offset)]++; break; } } w.literalEncoding.generate(w.literalFreq, 15); w.offsetEncoding.generate(w.offsetFreq, 15); // get the number of literals numLiterals := len(w.literalFreq); for w.literalFreq[numLiterals-1] == 0 { numLiterals-- } // get the number of offsets numOffsets := len(w.offsetFreq); for numOffsets > 1 && w.offsetFreq[numOffsets-1] == 0 { numOffsets-- } storedBytes := 0; if input != nil { storedBytes = len(input) } var extraBits int64; var storedSize int64; if storedBytes <= maxStoreBlockSize && input != nil { storedSize = int64((storedBytes + 5) * 8); // We only bother calculating the costs of the extra bits required by // the length of offset fields (which will be the same for both fixed // and dynamic encoding), if we need to compare those two encodings // against stored encoding. for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ { // First eight length codes have extra size = 0. extraBits += int64(w.literalFreq[lengthCode]) * int64(lengthExtraBits[lengthCode-lengthCodesStart]) } for offsetCode := 4; offsetCode < numOffsets; offsetCode++ { // First four offset codes have extra size = 0. extraBits += int64(w.offsetFreq[offsetCode]) * int64(offsetExtraBits[offsetCode]) } } else { storedSize = math.MaxInt32 } // Figure out which generates smaller code, fixed Huffman, dynamic // Huffman, or just storing the data. var fixedSize int64 = math.MaxInt64; if numOffsets <= offsetCodeCount { fixedSize = int64(3) + fixedLiteralEncoding.bitLength(w.literalFreq) + fixedOffsetEncoding.bitLength(w.offsetFreq) + extraBits } // Generate codegen and codegenFrequencies, which indicates how to encode // the literalEncoding and the offsetEncoding. w.generateCodegen(numLiterals, numOffsets); w.codegenEncoding.generate(w.codegenFreq, 7); numCodegens := len(w.codegenFreq); for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 { numCodegens-- } extensionSummand := 0; if numOffsets > offsetCodeCount { extensionSummand = 3 } dynamicHeader := int64(3+5+5+4+(3*numCodegens)) + // Following line is an extension. int64(extensionSummand) + w.codegenEncoding.bitLength(w.codegenFreq) + int64(extraBits) + int64(w.codegenFreq[16]*2) + int64(w.codegenFreq[17]*3) + int64(w.codegenFreq[18]*7); dynamicSize := dynamicHeader + w.literalEncoding.bitLength(w.literalFreq) + w.offsetEncoding.bitLength(w.offsetFreq); if storedSize < fixedSize && storedSize < dynamicSize { w.writeStoredHeader(storedBytes, eof); w.writeBytes(input[0:storedBytes]); return; } var literalEncoding *huffmanEncoder; var offsetEncoding *huffmanEncoder; if fixedSize <= dynamicSize { w.writeFixedHeader(eof); literalEncoding = fixedLiteralEncoding; offsetEncoding = fixedOffsetEncoding; } else { // Write the header. w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof); literalEncoding = w.literalEncoding; offsetEncoding = w.offsetEncoding; } // Write the tokens. for _, t := range tokens { switch t.typ() { case literalType: w.writeCode(literalEncoding, t.literal()); break; case matchType: // Write the length length := t.length(); lengthCode := lengthCode(length); w.writeCode(literalEncoding, lengthCode+lengthCodesStart); extraLengthBits := int32(lengthExtraBits[lengthCode]); if extraLengthBits > 0 { extraLength := int32(length - lengthBase[lengthCode]); w.writeBits(extraLength, extraLengthBits); } // Write the offset offset := t.offset(); offsetCode := offsetCode(offset); w.writeCode(offsetEncoding, offsetCode); extraOffsetBits := int32(offsetExtraBits[offsetCode]); if extraOffsetBits > 0 { extraOffset := int32(offset - offsetBase[offsetCode]); w.writeBits(extraOffset, extraOffsetBits); } break; default: panic("unknown token type: " + string(t)) } } }