// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // The vector package implements a container for managing sequences // of elements. Vectors grow and shrink dynamically as necessary. package vector // Vector is the container itself. // The zero value for Vector is an empty vector ready to use. type Vector struct { a []interface{}; bootstrap [8]interface{}; } func (p *Vector) realloc(length, capacity int) (b []interface{}) { if length <= cap(p.bootstrap) && capacity <= cap(p.bootstrap) { // don't allocate; use pre-allocated bootstrap array b = p.bootstrap[0:length] } else { b = make([]interface{}, length, capacity) } copy(b, p.a); p.a = b; return; } // Insert n elements at position i. func (p *Vector) expand(i, n int) { a := p.a; // make sure we have enough space len0 := len(a); len1 := len0 + n; if len1 <= cap(a) { // enough space - just expand a = a[0:len1] } else { // not enough space - double capacity capb := cap(a) * 2; if capb < len1 { // still not enough - use required length capb = len1 } // capb >= len1 a = p.realloc(len1, capb); } // make a hole for j := len0 - 1; j >= i; j-- { a[j+n] = a[j] } p.a = a; } // Resize changes the length and capacity of a vector. // If the new length is shorter than the current length, Resize discards // trailing elements. If the new length is longer than the current length, // Resize adds nil elements. The capacity parameter is ignored unless the // new length or capacity is longer that the current capacity. The resized // vector's capacity may be larger than the requested capacity. func (p *Vector) Resize(length, capacity int) *Vector { a := p.a; if length > cap(a) || capacity > cap(a) { // not enough space or larger capacity requested explicitly a = p.realloc(length, capacity) } else if length < len(a) { // clear trailing elements for i := range a[length:] { a[length+i] = nil } } p.a = a[0:length]; return p; } // Len returns the number of elements in the vector. func (p *Vector) Len() int { return len(p.a) } // Cap returns the capacity of the vector; that is, the // maximum length the vector can grow without resizing. func (p *Vector) Cap() int { return cap(p.a) } // At returns the i'th element of the vector. func (p *Vector) At(i int) interface{} { return p.a[i] } // Set sets the i'th element of the vector to value x. func (p *Vector) Set(i int, x interface{}) { p.a[i] = x } // Last returns the element in the vector of highest index. func (p *Vector) Last() interface{} { return p.a[len(p.a)-1] } // Data returns all the elements as a slice. func (p *Vector) Data() []interface{} { arr := make([]interface{}, p.Len()); for i, v := range p.a { arr[i] = v } return arr; } // Insert inserts into the vector an element of value x before // the current element at index i. func (p *Vector) Insert(i int, x interface{}) { p.expand(i, 1); p.a[i] = x; } // Delete deletes the i'th element of the vector. The gap is closed so the old // element at index i+1 has index i afterwards. func (p *Vector) Delete(i int) { a := p.a; n := len(a); copy(a[i:n-1], a[i+1:n]); a[n-1] = nil; // support GC, nil out entry p.a = a[0 : n-1]; } // InsertVector inserts into the vector the contents of the Vector // x such that the 0th element of x appears at index i after insertion. func (p *Vector) InsertVector(i int, x *Vector) { p.expand(i, len(x.a)); copy(p.a[i:i+len(x.a)], x.a); } // Cut deletes elements i through j-1, inclusive. func (p *Vector) Cut(i, j int) { a := p.a; n := len(a); m := n - (j - i); copy(a[i:m], a[j:n]); for k := m; k < n; k++ { a[k] = nil // support GC, nil out entries } p.a = a[0:m]; } // Slice returns a new Vector by slicing the old one to extract slice [i:j]. // The elements are copied. The original vector is unchanged. func (p *Vector) Slice(i, j int) *Vector { s := new(Vector).Resize(j-i, 0); // will fail in Init() if j < i copy(s.a, p.a[i:j]); return s; } // Do calls function f for each element of the vector, in order. // The function should not change the indexing of the vector underfoot. func (p *Vector) Do(f func(elem interface{})) { for i := 0; i < len(p.a); i++ { f(p.a[i]) // not too safe if f changes the Vector } } // Convenience wrappers // Push appends x to the end of the vector. func (p *Vector) Push(x interface{}) { p.Insert(len(p.a), x) } // Pop deletes the last element of the vector. func (p *Vector) Pop() interface{} { i := len(p.a) - 1; x := p.a[i]; p.a[i] = nil; // support GC, nil out entry p.a = p.a[0:i]; return x; } // AppendVector appends the entire Vector x to the end of this vector. func (p *Vector) AppendVector(x *Vector) { p.InsertVector(len(p.a), x) } // Partial sort.Interface support // LessInterface provides partial support of the sort.Interface. type LessInterface interface { Less(y interface{}) bool; } // Less returns a boolean denoting whether the i'th element is less than the j'th element. func (p *Vector) Less(i, j int) bool { return p.a[i].(LessInterface).Less(p.a[j]) } // Swap exchanges the elements at indexes i and j. func (p *Vector) Swap(i, j int) { a := p.a; a[i], a[j] = a[j], a[i]; } // Iterate over all elements; driver for range func (p *Vector) iterate(c chan<- interface{}) { for _, v := range p.a { c <- v } close(c); } // Channel iterator for range. func (p *Vector) Iter() <-chan interface{} { c := make(chan interface{}); go p.iterate(c); return c; }