// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package rsa import ( "big"; "crypto/subtle"; "io"; "os"; ) // This file implements encryption and decryption using PKCS#1 v1.5 padding. // EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5. // The message must be no longer than the length of the public modulus minus 11 bytes. // WARNING: use of this function to encrypt plaintexts other than session keys // is dangerous. Use RSA OAEP in new protocols. func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err os.Error) { k := (pub.N.Len() + 7) / 8; if len(msg) > k-11 { err = MessageTooLongError{}; return; } // EM = 0x02 || PS || 0x00 || M em := make([]byte, k-1); em[0] = 2; ps, mm := em[1:len(em)-len(msg)-1], em[len(em)-len(msg):]; err = nonZeroRandomBytes(ps, rand); if err != nil { return } em[len(em)-len(msg)-1] = 0; copy(mm, msg); m := new(big.Int).SetBytes(em); c := encrypt(new(big.Int), pub, m); out = c.Bytes(); return; } // DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5. // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err os.Error) { valid, out, err := decryptPKCS1v15(rand, priv, ciphertext); if err == nil && valid == 0 { err = DecryptionError{} } return; } // DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5. // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. // It returns an error if the ciphertext is the wrong length or if the // ciphertext is greater than the public modulus. Otherwise, no error is // returned. If the padding is valid, the resulting plaintext message is copied // into key. Otherwise, key is unchanged. These alternatives occur in constant // time. It is intended that the user of this function generate a random // session key beforehand and continue the protocol with the resulting value. // This will remove any possibility that an attacker can learn any information // about the plaintext. // See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA // Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology // (Crypto '98), func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err os.Error) { k := (priv.N.Len() + 7) / 8; if k-(len(key)+3+8) < 0 { err = DecryptionError{}; return; } valid, msg, err := decryptPKCS1v15(rand, priv, ciphertext); if err != nil { return } valid &= subtle.ConstantTimeEq(int32(len(msg)), int32(len(key))); subtle.ConstantTimeCopy(valid, key, msg); return; } func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, msg []byte, err os.Error) { k := (priv.N.Len() + 7) / 8; if k < 11 { err = DecryptionError{}; return; } c := new(big.Int).SetBytes(ciphertext); m, err := decrypt(rand, priv, c); if err != nil { return } em := leftPad(m.Bytes(), k); firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0); secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2); // The remainder of the plaintext must be a string of non-zero random // octets, followed by a 0, followed by the message. // lookingForIndex: 1 iff we are still looking for the zero. // index: the offset of the first zero byte. var lookingForIndex, index int; lookingForIndex = 1; for i := 2; i < len(em); i++ { equals0 := subtle.ConstantTimeByteEq(em[i], 0); index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index); lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex); } valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1); msg = em[index+1:]; return; } // nonZeroRandomBytes fills the given slice with non-zero random octets. func nonZeroRandomBytes(s []byte, rand io.Reader) (err os.Error) { _, err = io.ReadFull(rand, s); if err != nil { return } for i := 0; i < len(s); i++ { for s[i] == 0 { _, err = rand.Read(s[i : i+1]); if err != nil { return } } } return; } // Due to the design of PKCS#1 v1.5, we need to know the exact hash function in // use. A generic hash.Hash will not do. type PKCS1v15Hash int const ( HashMD5 PKCS1v15Hash = iota; HashSHA1; HashSHA256; HashSHA384; HashSHA512; ) // These are ASN1 DER structures: // DigestInfo ::= SEQUENCE { // digestAlgorithm AlgorithmIdentifier, // digest OCTET STRING // } // For performance, we don't use the generic ASN1 encoding. Rather, we // precompute a prefix of the digest value that makes a valid ASN1 DER string // with the correct contents. var hashPrefixes = [][]byte{ // HashMD5 []byte{0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, // HashSHA1 []byte{0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, // HashSHA256 []byte{0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, // HashSHA384 []byte{0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, // HashSHA512 []byte{0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, } // SignPKCS1v15 calcuates the signature of hashed using RSASSA-PSS-SIGN from RSA PKCS#1 v1.5. // Note that hashed must be the result of hashing the input message using the // given hash function. func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash PKCS1v15Hash, hashed []byte) (s []byte, err os.Error) { hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)); if err != nil { return } tLen := len(prefix) + hashLen; k := (priv.N.Len() + 7) / 8; if k < tLen+11 { return nil, MessageTooLongError{} } // EM = 0x00 || 0x01 || PS || 0x00 || T em := make([]byte, k); em[1] = 1; for i := 2; i < k-tLen-1; i++ { em[i] = 0xff } copy(em[k-tLen:k-hashLen], prefix); copy(em[k-hashLen:k], hashed); m := new(big.Int).SetBytes(em); c, err := decrypt(rand, priv, m); if err == nil { s = c.Bytes() } return; } // VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature. // hashed is the result of hashing the input message using the given hash // function and sig is the signature. A valid signature is indicated by // returning a nil error. func VerifyPKCS1v15(pub *PublicKey, hash PKCS1v15Hash, hashed []byte, sig []byte) (err os.Error) { hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)); if err != nil { return } tLen := len(prefix) + hashLen; k := (pub.N.Len() + 7) / 8; if k < tLen+11 { err = VerificationError{}; return; } c := new(big.Int).SetBytes(sig); m := encrypt(new(big.Int), pub, c); em := leftPad(m.Bytes(), k); // EM = 0x00 || 0x01 || PS || 0x00 || T ok := subtle.ConstantTimeByteEq(em[0], 0); ok &= subtle.ConstantTimeByteEq(em[1], 1); ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed); ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix); ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0); for i := 2; i < k-tLen-1; i++ { ok &= subtle.ConstantTimeByteEq(em[i], 0xff) } if ok != 1 { return VerificationError{} } return nil; } func pkcs1v15HashInfo(hash PKCS1v15Hash, inLen int) (hashLen int, prefix []byte, err os.Error) { switch hash { case HashMD5: hashLen = 16 case HashSHA1: hashLen = 20 case HashSHA256: hashLen = 32 case HashSHA384: hashLen = 48 case HashSHA512: hashLen = 64 default: return 0, nil, os.ErrorString("unknown hash function") } if inLen != hashLen { return 0, nil, os.ErrorString("input must be hashed message") } prefix = hashPrefixes[int(hash)]; return; }