// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This package implements an X11 backend for the exp/draw package. // // The X protocol specification is at ftp://ftp.x.org/pub/X11R7.0/doc/PDF/proto.pdf. // A summary of the wire format can be found in XCB's xproto.xml. package x11 // BUG(nigeltao): This is a toy library and not ready for production use. import ( "bufio"; "exp/draw"; "image"; "io"; "net"; "os"; ) type resID uint32 // X resource IDs. // TODO(nigeltao): Handle window resizes. const ( windowHeight = 600; windowWidth = 800; ) type conn struct { // TODO(nigeltao): Figure out which goroutine should be responsible for closing c, // or if there is a race condition if one goroutine calls c.Close whilst another one // is reading from r, or writing to w. c io.Closer; r *bufio.Reader; w *bufio.Writer; gc, window, root, visual resID; img *image.RGBA; kbd chan int; mouse chan draw.Mouse; resize chan bool; quit chan bool; mouseState draw.Mouse; buf [256]byte; // General purpose scratch buffer. flush chan bool; flushBuf0 [24]byte; flushBuf1 [4 * 1024]byte; } // flusher runs in its own goroutine, serving both FlushImage calls directly from the exp/draw client // and indirectly from X expose events. It paints c.img to the X server via PutImage requests. func (c *conn) flusher() { for { _ = <-c.flush; if closed(c.flush) { return } // Each X request has a 16-bit length (in terms of 4-byte units). To avoid going over // this limit, we send PutImage for each row of the image, rather than trying to paint // the entire image in one X request. This approach could easily be optimized (or the // X protocol may have an escape sequence to delimit very large requests). // TODO(nigeltao): See what XCB's xcb_put_image does in this situation. w, h := c.img.Width(), c.img.Height(); units := 6 + w; if units > 0xffff || h > 0xffff { // This window is too large for X. close(c.flush); return; } c.flushBuf0[0] = 0x48; // PutImage opcode. c.flushBuf0[1] = 0x02; // XCB_IMAGE_FORMAT_Z_PIXMAP. c.flushBuf0[2] = uint8(units); c.flushBuf0[3] = uint8(units >> 8); setU32LE(c.flushBuf0[4:8], uint32(c.window)); setU32LE(c.flushBuf0[8:12], uint32(c.gc)); setU32LE(c.flushBuf0[12:16], 1<<16|uint32(w)); c.flushBuf0[21] = 0x18; // depth = 24 bits. for y := 0; y < h; y++ { setU32LE(c.flushBuf0[16:20], uint32(y<<16)); _, err := c.w.Write(c.flushBuf0[0:24]); if err != nil { close(c.flush); return; } for x := 0; x < w; { nx := w - x; if nx > len(c.flushBuf1)/4 { nx = len(c.flushBuf1) / 4 } for i := 0; i < nx; i++ { r, g, b, _ := c.img.At(x, y).RGBA(); c.flushBuf1[4*i+0] = uint8(b >> 24); c.flushBuf1[4*i+1] = uint8(g >> 24); c.flushBuf1[4*i+2] = uint8(r >> 24); x++; } _, err := c.w.Write(c.flushBuf1[0 : 4*nx]); if err != nil { close(c.flush); return; } } } if c.w.Flush() != nil { close(c.flush); return; } } } func (c *conn) Screen() draw.Image { return c.img } func (c *conn) FlushImage() { // We do the send (the <- operator) in an expression context, rather than in // a statement context, so that it does not block, and fails if the buffered // channel is full (in which case there already is a flush request pending). _ = c.flush <- false } func (c *conn) KeyboardChan() <-chan int { return c.kbd } func (c *conn) MouseChan() <-chan draw.Mouse { return c.mouse } func (c *conn) ResizeChan() <-chan bool { return c.resize } func (c *conn) QuitChan() <-chan bool { return c.quit } // pumper runs in its own goroutine, reading X events and demuxing them over the kbd / mouse / resize / quit chans. func (c *conn) pumper() { for { // X events are always 32 bytes long. _, err := io.ReadFull(c.r, c.buf[0:32]); if err != nil { // TODO(nigeltao): should draw.Context expose err? // TODO(nigeltao): should we do c.quit<-true? Should c.quit be a buffered channel? // Or is c.quit only for non-exceptional closing (e.g. when the window manager destroys // our window), and not for e.g. an I/O error? break } switch c.buf[0] { case 0x02, 0x03: // Key press, key release. // BUG(nigeltao): Keycode to keysym mapping is not implemented. // The keycode is in c.buf[1], but as keymaps aren't implemented yet, we'll use the // space character as a placeholder. keysym := int(' '); // TODO(nigeltao): Should we send KeyboardChan ints for Shift/Ctrl/Alt? Should Shift-A send // the same int down the channel as the sent on just the A key? // TODO(nigeltao): How should IME events (e.g. key presses that should generate CJK text) work? Or // is that outside the scope of the draw.Context interface? if c.buf[0] == 0x03 { keysym = -keysym } c.kbd <- keysym; case 0x04, 0x05: // Button press, button release. mask := 1 << (c.buf[1] - 1); if c.buf[0] == 0x04 { c.mouseState.Buttons |= mask } else { c.mouseState.Buttons &^= mask } // TODO(nigeltao): update mouseState's timestamp. c.mouse <- c.mouseState; case 0x06: // Motion notify. c.mouseState.Point.X = int(c.buf[25])<<8 | int(c.buf[24]); c.mouseState.Point.Y = int(c.buf[27])<<8 | int(c.buf[26]); // TODO(nigeltao): update mouseState's timestamp. c.mouse <- c.mouseState; case 0x0c: // Expose. // A single user action could trigger multiple expose events (e.g. if moving another // window with XShape'd rounded corners over our window). In that case, the X server // will send a count (in bytes 16-17) of the number of additional expose events coming. // We could parse each event for the (x, y, width, height) and maintain a minimal dirty // rectangle, but for now, the simplest approach is to paint the entire window, when // receiving the final event in the series. count := int(c.buf[17])<<8 | int(c.buf[16]); if count == 0 { // TODO(nigeltao): Should we ignore the very first expose event? A freshly mapped window // will trigger expose, but until the first c.FlushImage call, there's probably nothing to // paint but black. For an 800x600 window, at 4 bytes per pixel, each repaint writes about // 2MB over the socket. c.FlushImage() } // TODO(nigeltao): Should we listen to DestroyNotify (0x11) and ResizeRequest (0x19) events? // What about EnterNotify (0x07) and LeaveNotify (0x08)? } } close(c.flush); // TODO(nigeltao): Is this the right place for c.c.Close()? // TODO(nigeltao): Should we explicitly close our kbd/mouse/resize/quit chans? } // Authenticate ourselves with the X server. func (c *conn) authenticate() os.Error { key, value, err := readAuth(c.buf[0:]); if err != nil { return err } // Assume that the authentication protocol is "MIT-MAGIC-COOKIE-1". if len(key) != 18 || len(value) != 16 { return os.NewError("unsupported Xauth") } // 0x006c means little-endian. 0x000b, 0x0000 means X major version 11, minor version 0. // 0x0012 and 0x0010 means the auth key and value have lenths 18 and 16. // The final 0x0000 is padding, so that the string length is a multiple of 4. _, err = io.WriteString(c.w, "\x6c\x00\x0b\x00\x00\x00\x12\x00\x10\x00\x00\x00"); if err != nil { return err } _, err = io.WriteString(c.w, key); if err != nil { return err } // Again, the 0x0000 is padding. _, err = io.WriteString(c.w, "\x00\x00"); if err != nil { return err } _, err = io.WriteString(c.w, value); if err != nil { return err } err = c.w.Flush(); if err != nil { return err } return nil; } // Reads a uint8 from r, using b as a scratch buffer. func readU8(r io.Reader, b []byte) (uint8, os.Error) { _, err := io.ReadFull(r, b[0:1]); if err != nil { return 0, err } return uint8(b[0]), nil; } // Reads a little-endian uint16 from r, using b as a scratch buffer. func readU16LE(r io.Reader, b []byte) (uint16, os.Error) { _, err := io.ReadFull(r, b[0:2]); if err != nil { return 0, err } return uint16(b[0]) | uint16(b[1])<<8, nil; } // Reads a little-endian uint32 from r, using b as a scratch buffer. func readU32LE(r io.Reader, b []byte) (uint32, os.Error) { _, err := io.ReadFull(r, b[0:4]); if err != nil { return 0, err } return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24, nil; } // Sets b[0:4] to be the big-endian representation of u. func setU32LE(b []byte, u uint32) { b[0] = byte((u >> 0) & 0xff); b[1] = byte((u >> 8) & 0xff); b[2] = byte((u >> 16) & 0xff); b[3] = byte((u >> 24) & 0xff); } // Check that we have an agreeable X pixmap Format. func checkPixmapFormats(r io.Reader, b []byte, n int) (agree bool, err os.Error) { for i := 0; i < n; i++ { _, err = io.ReadFull(r, b[0:8]); if err != nil { return } // Byte 0 is depth, byte 1 is bits-per-pixel, byte 2 is scanline-pad, the rest (5) is padding. if b[0] == 24 && b[1] == 32 { agree = true } } return; } // Check that we have an agreeable X Depth (i.e. one that has an agreeable X VisualType). func checkDepths(r io.Reader, b []byte, n int, visual uint32) (agree bool, err os.Error) { for i := 0; i < n; i++ { depth, err := readU16LE(r, b); if err != nil { return } depth &= 0xff; visualsLen, err := readU16LE(r, b); if err != nil { return } // Ignore 4 bytes of padding. _, err = io.ReadFull(r, b[0:4]); if err != nil { return } for j := 0; j < int(visualsLen); j++ { // Read 24 bytes: visual(4), class(1), bits per rgb value(1), colormap entries(2), // red mask(4), green mask(4), blue mask(4), padding(4). v, err := readU32LE(r, b); _, err = readU32LE(r, b); rm, err := readU32LE(r, b); gm, err := readU32LE(r, b); bm, err := readU32LE(r, b); _, err = readU32LE(r, b); if err != nil { return } if v == visual && rm == 0xff0000 && gm == 0xff00 && bm == 0xff && depth == 24 { agree = true } } } return; } // Check that we have an agreeable X Screen. func checkScreens(r io.Reader, b []byte, n int) (root, visual uint32, err os.Error) { for i := 0; i < n; i++ { root0, err := readU32LE(r, b); if err != nil { return } // Ignore the next 7x4 bytes, which is: colormap, whitepixel, blackpixel, current input masks, // width and height (pixels), width and height (mm), min and max installed maps. _, err = io.ReadFull(r, b[0:28]); if err != nil { return } visual0, err := readU32LE(r, b); if err != nil { return } // Next 4 bytes: backing stores, save unders, root depth, allowed depths length. x, err := readU32LE(r, b); if err != nil { return } nDepths := int(x >> 24); agree, err := checkDepths(r, b, nDepths, visual0); if err != nil { return } if agree && root == 0 { root = root0; visual = visual0; } } return; } // Perform the protocol handshake with the X server, and ensure that the server provides a compatible Screen, Depth, etcetera. func (c *conn) handshake() os.Error { _, err := io.ReadFull(c.r, c.buf[0:8]); if err != nil { return err } // Byte 0:1 should be 1 (success), bytes 2:6 should be 0xb0000000 (major/minor version 11.0). if c.buf[0] != 1 || c.buf[2] != 11 || c.buf[3] != 0 || c.buf[4] != 0 || c.buf[5] != 0 { return os.NewError("unsupported X version") } // Ignore the release number. _, err = io.ReadFull(c.r, c.buf[0:4]); if err != nil { return err } // Read the resource ID base. resourceIdBase, err := readU32LE(c.r, c.buf[0:4]); if err != nil { return err } // Read the resource ID mask. resourceIdMask, err := readU32LE(c.r, c.buf[0:4]); if err != nil { return err } if resourceIdMask < 256 { return os.NewError("X resource ID mask is too small") } // Ignore the motion buffer size. _, err = io.ReadFull(c.r, c.buf[0:4]); if err != nil { return err } // Read the vendor length. vendorLen, err := readU16LE(c.r, c.buf[0:2]); if err != nil { return err } if vendorLen != 20 { // For now, assume the vendor is "The X.Org Foundation". Supporting different // vendors would require figuring out how much padding we need to read. return os.NewError("unsupported X vendor") } // Read the maximum request length. maxReqLen, err := readU16LE(c.r, c.buf[0:2]); if err != nil { return err } if maxReqLen != 0xffff { return os.NewError("unsupported X maximum request length") } // Read the roots length. rootsLen, err := readU8(c.r, c.buf[0:1]); if err != nil { return err } // Read the pixmap formats length. pixmapFormatsLen, err := readU8(c.r, c.buf[0:1]); if err != nil { return err } // Ignore some things that we don't care about (totalling 30 bytes): // imageByteOrder(1), bitmapFormatBitOrder(1), bitmapFormatScanlineUnit(1) bitmapFormatScanlinePad(1), // minKeycode(1), maxKeycode(1), padding(4), vendor(20, hard-coded above). _, err = io.ReadFull(c.r, c.buf[0:30]); if err != nil { return err } // Check that we have an agreeable pixmap format. agree, err := checkPixmapFormats(c.r, c.buf[0:8], int(pixmapFormatsLen)); if err != nil { return err } if !agree { return os.NewError("unsupported X pixmap formats") } // Check that we have an agreeable screen. root, visual, err := checkScreens(c.r, c.buf[0:24], int(rootsLen)); if err != nil { return err } if root == 0 || visual == 0 { return os.NewError("unsupported X screen") } c.gc = resID(resourceIdBase); c.window = resID(resourceIdBase + 1); c.root = resID(root); c.visual = resID(visual); return nil; } // Returns a new draw.Context, backed by a newly created and mapped X11 window. func NewWindow() (draw.Context, os.Error) { display := getDisplay(); if len(display) == 0 { return nil, os.NewError("unsupported DISPLAY") } s, err := net.Dial("unix", "", "/tmp/.X11-unix/X"+display); if err != nil { return nil, err } c := new(conn); c.c = s; c.r = bufio.NewReader(s); c.w = bufio.NewWriter(s); err = c.authenticate(); if err != nil { return nil, err } err = c.handshake(); if err != nil { return nil, err } // Now that we're connected, show a window, via three X protocol messages. // First, create a graphics context (GC). setU32LE(c.buf[0:4], 0x00060037); // 0x37 is the CreateGC opcode, and the message is 6 x 4 bytes long. setU32LE(c.buf[4:8], uint32(c.gc)); setU32LE(c.buf[8:12], uint32(c.root)); setU32LE(c.buf[12:16], 0x00010004); // Bit 2 is XCB_GC_FOREGROUND, bit 16 is XCB_GC_GRAPHICS_EXPOSURES. setU32LE(c.buf[16:20], 0x00000000); // The Foreground is black. setU32LE(c.buf[20:24], 0x00000000); // GraphicsExposures' value is unused. // Second, create the window. setU32LE(c.buf[24:28], 0x000a0001); // 0x01 is the CreateWindow opcode, and the message is 10 x 4 bytes long. setU32LE(c.buf[28:32], uint32(c.window)); setU32LE(c.buf[32:36], uint32(c.root)); setU32LE(c.buf[36:40], 0x00000000); // Initial (x, y) is (0, 0). setU32LE(c.buf[40:44], windowHeight<<16|windowWidth); setU32LE(c.buf[44:48], 0x00010000); // Border width is 0, XCB_WINDOW_CLASS_INPUT_OUTPUT is 1. setU32LE(c.buf[48:52], uint32(c.visual)); setU32LE(c.buf[52:56], 0x00000802); // Bit 1 is XCB_CW_BACK_PIXEL, bit 11 is XCB_CW_EVENT_MASK. setU32LE(c.buf[56:60], 0x00000000); // The Back-Pixel is black. setU32LE(c.buf[60:64], 0x0000804f); // Key/button press and release, pointer motion, and expose event masks. // Third, map the window. setU32LE(c.buf[64:68], 0x00020008); // 0x08 is the MapWindow opcode, and the message is 2 x 4 bytes long. setU32LE(c.buf[68:72], uint32(c.window)); // Write the bytes. _, err = c.w.Write(c.buf[0:72]); if err != nil { return nil, err } err = c.w.Flush(); if err != nil { return nil, err } c.img = image.NewRGBA(windowWidth, windowHeight); // TODO(nigeltao): Should these channels be buffered? c.kbd = make(chan int); c.mouse = make(chan draw.Mouse); c.resize = make(chan bool); c.quit = make(chan bool); c.flush = make(chan bool, 1); go c.flusher(); go c.pumper(); return c, nil; }