// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements printing of AST nodes; specifically // expressions, statements, declarations, and files. It uses // the print functionality implemented in printer.go. package printer import ( "bytes"; "go/ast"; "go/token"; ) // Disabled formatting - enable eventually and remove the flag. const ( compositeLitBlank = false; fewerSemis = true; stringListMode = exprListMode(0); // previously: noIndent ) // Other formatting issues: // - replacement of expression spacing algorithm with rsc's algorithm // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration) // when the comment spans multiple lines; if such a comment is just two lines, formatting is // not idempotent // - formatting of expression lists; especially for string lists (stringListMode) // - blank after { and before } in one-line composite literals probably looks better // - should use blank instead of tab to separate one-line function bodies from // the function header unless there is a group of consecutive one-liners // ---------------------------------------------------------------------------- // Common AST nodes. // Print as many newlines as necessary (but at least min and and at most // max newlines) to get to the current line. ws is printed before the first // line break. If newSection is set, the first line break is printed as // formfeed. Returns true if any line break was printed; returns false otherwise. // // TODO(gri): Reconsider signature (provide position instead of line) // func (p *printer) linebreak(line, min, max int, ws whiteSpace, newSection bool) (printedBreak bool) { n := line - p.pos.Line; switch { case n < min: n = min case n > max: n = max } if n > 0 { p.print(ws); if newSection { p.print(formfeed); n--; printedBreak = true; } } for ; n > 0; n-- { p.print(newline); printedBreak = true; } return; } // TODO(gri): The code for printing lead and line comments // should be eliminated in favor of reusing the // comment intersperse mechanism above somehow. // Print a list of individual comments. func (p *printer) commentList(list []*ast.Comment) { for i, c := range list { t := c.Text; // TODO(gri): this needs to be styled like normal comments p.print(c.Pos(), t); if t[1] == '/' && i+1 < len(list) { //-style comment which is not at the end; print a newline p.print(newline) } } } // Print a lead comment followed by a newline. func (p *printer) leadComment(d *ast.CommentGroup) { // Ignore the comment if we have comments interspersed (p.comment != nil). if p.comment == nil && d != nil { p.commentList(d.List); p.print(newline); } } // Print a tab followed by a line comment. // A newline must be printed afterwards since // the comment may be a //-style comment. func (p *printer) lineComment(d *ast.CommentGroup) { // Ignore the comment if we have comments interspersed (p.comment != nil). if p.comment == nil && d != nil { p.print(vtab); p.commentList(d.List); } } // Sets multiLine to true if the identifier list spans multiple lines. func (p *printer) identList(list []*ast.Ident, multiLine *bool) { // convert into an expression list so we can re-use exprList formatting xlist := make([]ast.Expr, len(list)); for i, x := range list { xlist[i] = x } p.exprList(noPos, xlist, 1, commaSep, multiLine); } // Sets multiLine to true if the string list spans multiple lines. func (p *printer) stringList(list []*ast.BasicLit, multiLine *bool) { // convert into an expression list so we can re-use exprList formatting xlist := make([]ast.Expr, len(list)); for i, x := range list { xlist[i] = x } p.exprList(noPos, xlist, 1, stringListMode, multiLine); } type exprListMode uint const ( blankStart exprListMode = 1 << iota; // print a blank before a non-empty list blankEnd; // print a blank after a non-empty list commaSep; // elements are separated by commas commaTerm; // elements are terminated by comma noIndent; // no extra indentation in multi-line lists ) // Print a list of expressions. If the list spans multiple // source lines, the original line breaks are respected between // expressions. Sets multiLine to true if the list spans multiple // lines. func (p *printer) exprList(prev token.Position, list []ast.Expr, depth int, mode exprListMode, multiLine *bool) { if len(list) == 0 { return } if mode&blankStart != 0 { p.print(blank) } // TODO(gri): endLine may be incorrect as it is really the beginning // of the last list entry. There may be only one, very long // entry in which case line == endLine. line := list[0].Pos().Line; endLine := list[len(list)-1].Pos().Line; if prev.IsValid() && prev.Line == line && line == endLine { // all list entries on a single line for i, x := range list { if i > 0 { if mode&commaSep != 0 { p.print(token.COMMA) } p.print(blank); } p.expr0(x, depth, multiLine); } if mode&blankEnd != 0 { p.print(blank) } return; } // list entries span multiple lines; // use source code positions to guide line breaks // don't add extra indentation if noIndent is set; // i.e., pretend that the first line is already indented ws := ignore; if mode&noIndent == 0 { ws = indent } if prev.IsValid() && prev.Line < line && p.linebreak(line, 1, 2, ws, true) { ws = ignore; *multiLine = true; } for i, x := range list { prev := line; line = x.Pos().Line; if i > 0 { if mode&commaSep != 0 { p.print(token.COMMA) } if prev < line && prev > 0 && line > 0 { if p.linebreak(line, 1, 2, ws, true) { ws = ignore; *multiLine = true; } } else { p.print(blank) } } p.expr0(x, depth, multiLine); } if mode&commaTerm != 0 { p.print(token.COMMA); if ws == ignore && mode&noIndent == 0 { // unindent if we indented p.print(unindent) } p.print(formfeed); // terminating comma needs a line break to look good return; } if mode&blankEnd != 0 { p.print(blank) } if ws == ignore && mode&noIndent == 0 { // unindent if we indented p.print(unindent) } } // Sets multiLine to true if the the parameter list spans multiple lines. func (p *printer) parameters(list []*ast.Field, multiLine *bool) { p.print(token.LPAREN); if len(list) > 0 { for i, par := range list { if i > 0 { p.print(token.COMMA, blank) } if len(par.Names) > 0 { p.identList(par.Names, multiLine); p.print(blank); } p.expr(par.Type, multiLine); } } p.print(token.RPAREN); } // Returns true if a separating semicolon is optional. // Sets multiLine to true if the signature spans multiple lines. func (p *printer) signature(params, result []*ast.Field, multiLine *bool) (optSemi bool) { p.parameters(params, multiLine); if result != nil { p.print(blank); if len(result) == 1 && result[0].Names == nil { // single anonymous result; no ()'s unless it's a function type f := result[0]; if _, isFtyp := f.Type.(*ast.FuncType); !isFtyp { optSemi = p.expr(f.Type, multiLine); return; } } p.parameters(result, multiLine); } return; } func identListSize(list []*ast.Ident, maxSize int) (size int) { for i, x := range list { if i > 0 { size += 2 // ", " } size += len(x.Value); if size >= maxSize { break } } return; } func (p *printer) isOneLineFieldList(list []*ast.Field) bool { if len(list) != 1 { return false // allow only one field } f := list[0]; if f.Tag != nil || f.Comment != nil { return false // don't allow tags or comments } // only name(s) and type const maxSize = 30; // adjust as appropriate, this is an approximate value namesSize := identListSize(f.Names, maxSize); if namesSize > 0 { namesSize = 1 // blank between names and types } typeSize := p.nodeSize(f.Type, maxSize); return namesSize+typeSize <= maxSize; } func (p *printer) fieldList(lbrace token.Position, list []*ast.Field, rbrace token.Position, isIncomplete bool, ctxt exprContext) { if !isIncomplete && !p.commentBefore(rbrace) { // possibly a one-line struct/interface if len(list) == 0 { // no blank between keyword and {} in this case p.print(lbrace, token.LBRACE, rbrace, token.RBRACE); return; } else if ctxt&(compositeLit|structType) == compositeLit|structType && p.isOneLineFieldList(list) { // for now ignore interfaces // small enough - print on one line // (don't use identList and ignore source line breaks) p.print(lbrace, token.LBRACE, blank); f := list[0]; for i, x := range f.Names { if i > 0 { p.print(token.COMMA, blank) } p.expr(x, ignoreMultiLine); } if len(f.Names) > 0 { p.print(blank) } p.expr(f.Type, ignoreMultiLine); p.print(blank, rbrace, token.RBRACE); return; } } // at least one entry or incomplete p.print(blank, lbrace, token.LBRACE, indent, formfeed); if ctxt&structType != 0 { sep := vtab; if len(list) == 1 { sep = blank } var ml bool; for i, f := range list { if i > 0 { p.linebreak(f.Pos().Line, 1, 2, ignore, ml) } ml = false; extraTabs := 0; p.leadComment(f.Doc); if len(f.Names) > 0 { // named fields p.identList(f.Names, &ml); p.print(sep); p.expr(f.Type, &ml); extraTabs = 1; } else { // anonymous field p.expr(f.Type, &ml); extraTabs = 2; } if f.Tag != nil { if len(f.Names) > 0 && sep == vtab { p.print(sep) } p.print(sep); p.expr(&ast.StringList{f.Tag}, &ml); extraTabs = 0; } p.print(token.SEMICOLON); if f.Comment != nil { for ; extraTabs > 0; extraTabs-- { p.print(vtab) } p.lineComment(f.Comment); } } if isIncomplete { if len(list) > 0 { p.print(formfeed) } // TODO(gri): this needs to be styled like normal comments p.print("// contains unexported fields"); } } else { // interface var ml bool; for i, f := range list { if i > 0 { p.linebreak(f.Pos().Line, 1, 2, ignore, ml) } ml = false; p.leadComment(f.Doc); if ftyp, isFtyp := f.Type.(*ast.FuncType); isFtyp { // method p.expr(f.Names[0], &ml); p.signature(ftyp.Params, ftyp.Results, &ml); } else { // embedded interface p.expr(f.Type, &ml) } p.print(token.SEMICOLON); p.lineComment(f.Comment); } if isIncomplete { if len(list) > 0 { p.print(formfeed) } // TODO(gri): this needs to be styled like normal comments p.print("// contains unexported methods"); } } p.print(unindent, formfeed, rbrace, token.RBRACE); } // ---------------------------------------------------------------------------- // Expressions // exprContext describes the syntactic environment in which an expression node is printed. type exprContext uint const ( compositeLit = 1 << iota; structType; ) func walkBinary(e *ast.BinaryExpr) (has5, has6 bool, maxProblem int) { switch e.Op.Precedence() { case 5: has5 = true case 6: has6 = true } switch l := e.X.(type) { case *ast.BinaryExpr: if l.Op.Precedence() < e.Op.Precedence() { // parens will be inserted. // pretend this is an *ast.ParenExpr and do nothing. break } h5, h6, mp := walkBinary(l); has5 = has5 || h5; has6 = has6 || h6; if maxProblem < mp { maxProblem = mp } } switch r := e.Y.(type) { case *ast.BinaryExpr: if r.Op.Precedence() <= e.Op.Precedence() { // parens will be inserted. // pretend this is an *ast.ParenExpr and do nothing. break } h5, h6, mp := walkBinary(r); has5 = has5 || h5; has6 = has6 || h6; if maxProblem < mp { maxProblem = mp } case *ast.StarExpr: if e.Op.String() == "/" { maxProblem = 6 } case *ast.UnaryExpr: switch e.Op.String() + r.Op.String() { case "/*": maxProblem = 6 case "++", "--": if maxProblem < 5 { maxProblem = 5 } } } return; } func cutoff(e *ast.BinaryExpr, depth int) int { has5, has6, maxProblem := walkBinary(e); if maxProblem > 0 { return maxProblem + 1 } if has5 && has6 { if depth == 1 { return 6 } return 5; } if depth == 1 { return 7 } return 5; } func diffPrec(expr ast.Expr, prec int) int { x, ok := expr.(*ast.BinaryExpr); if !ok || prec != x.Op.Precedence() { return 1 } return 0; } // Format the binary expression: decide the cutoff and then format. // Let's call depth == 1 Normal mode, and depth > 1 Compact mode. // (Algorithm suggestion by Russ Cox.) // // The precedences are: // 6 * / % << >> & &^ // 5 + - | ^ // 4 == != < <= > >= // 3 <- // 2 && // 1 || // // The only decision is whether there will be spaces around levels 5 and 6. // There are never spaces at level 7 (unary), and always spaces at levels 4 and below. // // To choose the cutoff, look at the whole expression but excluding primary // expressions (function calls, parenthesized exprs), and apply these rules: // // 1) If there is a binary operator with a right side unary operand // that would clash without a space, the cutoff must be (in order): // // &^ 7 // /* 7 // ++ 6 // -- 6 // // 2) If there is a mix of level 6 and level 5 operators, then the cutoff // is 6 (use spaces to distinguish precedence) in Normal mode // and 5 (never use spaces) in Compact mode. // // 3) If there are no level 5 operators or no level 6 operators, then the // cutoff is 7 (always use spaces) in Normal mode // and 5 (never use spaces) in Compact mode. // // Sets multiLine to true if the binary expression spans multiple lines. func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int, multiLine *bool) { prec := x.Op.Precedence(); if prec < prec1 { // parenthesis needed // Note: The parser inserts an ast.ParenExpr node; thus this case // can only occur if the AST is created in a different way. p.print(token.LPAREN); p.expr0(x, depth-1, multiLine); // parentheses undo one level of depth p.print(token.RPAREN); return; } printBlank := prec < cutoff; ws := indent; p.expr1(x.X, prec, depth+diffPrec(x.X, prec), 0, multiLine); if printBlank { p.print(blank) } xline := p.pos.Line; // before the operator (it may be on the next line!) yline := x.Y.Pos().Line; p.print(x.OpPos, x.Op); if xline != yline && xline > 0 && yline > 0 { // at least one line break, but respect an extra empty line // in the source if p.linebreak(yline, 1, 2, ws, true) { ws = ignore; *multiLine = true; printBlank = false; // no blank after line break } } if printBlank { p.print(blank) } p.expr1(x.Y, prec+1, depth+1, 0, multiLine); if ws == ignore { p.print(unindent) } } func isBinary(expr ast.Expr) bool { _, ok := expr.(*ast.BinaryExpr); return ok; } // Returns true if a separating semicolon is optional. // Sets multiLine to true if the expression spans multiple lines. func (p *printer) expr1(expr ast.Expr, prec1, depth int, ctxt exprContext, multiLine *bool) (optSemi bool) { p.print(expr.Pos()); switch x := expr.(type) { case *ast.BadExpr: p.print("BadExpr") case *ast.Ident: p.print(x) case *ast.BinaryExpr: if depth < 1 { p.internalError("depth < 1:", depth); depth = 1; } p.binaryExpr(x, prec1, cutoff(x, depth), depth, multiLine); case *ast.KeyValueExpr: p.expr(x.Key, multiLine); p.print(x.Colon, token.COLON, blank); p.expr(x.Value, multiLine); case *ast.StarExpr: const prec = token.UnaryPrec; if prec < prec1 { // parenthesis needed p.print(token.LPAREN); p.print(token.MUL); optSemi = p.expr(x.X, multiLine); p.print(token.RPAREN); } else { // no parenthesis needed p.print(token.MUL); optSemi = p.expr(x.X, multiLine); } case *ast.UnaryExpr: const prec = token.UnaryPrec; if prec < prec1 { // parenthesis needed p.print(token.LPAREN); p.expr(x, multiLine); p.print(token.RPAREN); } else { // no parenthesis needed p.print(x.Op); if x.Op == token.RANGE { p.print(blank) } p.expr1(x.X, prec, depth, 0, multiLine); } case *ast.BasicLit: p.print(x) case *ast.StringList: p.stringList(x.Strings, multiLine) case *ast.FuncLit: p.expr(x.Type, multiLine); p.funcBody(x.Body, distance(x.Type.Pos(), p.pos), true, multiLine); case *ast.ParenExpr: p.print(token.LPAREN); p.expr0(x.X, depth-1, multiLine); // parentheses undo one level of depth p.print(x.Rparen, token.RPAREN); case *ast.SelectorExpr: p.expr1(x.X, token.HighestPrec, depth, 0, multiLine); p.print(token.PERIOD); p.expr1(x.Sel, token.HighestPrec, depth, 0, multiLine); case *ast.TypeAssertExpr: p.expr1(x.X, token.HighestPrec, depth, 0, multiLine); p.print(token.PERIOD, token.LPAREN); if x.Type != nil { p.expr(x.Type, multiLine) } else { p.print(token.TYPE) } p.print(token.RPAREN); case *ast.IndexExpr: // TODO(gri): should treat[] like parentheses and undo one level of depth p.expr1(x.X, token.HighestPrec, 1, 0, multiLine); p.print(token.LBRACK); p.expr0(x.Index, depth+1, multiLine); p.print(token.RBRACK); case *ast.SliceExpr: // TODO(gri): should treat[] like parentheses and undo one level of depth p.expr1(x.X, token.HighestPrec, 1, 0, multiLine); p.print(token.LBRACK); p.expr0(x.Index, depth+1, multiLine); // blanks around ":" if both sides exist and either side is a binary expression if depth <= 1 && x.End != nil && (isBinary(x.Index) || isBinary(x.End)) { p.print(blank, token.COLON, blank) } else { p.print(token.COLON) } if x.End != nil { p.expr0(x.End, depth+1, multiLine) } p.print(token.RBRACK); case *ast.CallExpr: if len(x.Args) > 1 { depth++ } p.expr1(x.Fun, token.HighestPrec, depth, 0, multiLine); p.print(x.Lparen, token.LPAREN); p.exprList(x.Lparen, x.Args, depth, commaSep, multiLine); p.print(x.Rparen, token.RPAREN); case *ast.CompositeLit: p.expr1(x.Type, token.HighestPrec, depth, compositeLit, multiLine); mode := commaSep | commaTerm; if compositeLitBlank { // add blank padding around composite literal // contents for a less dense look mode |= blankStart | blankEnd; if x.Lbrace.Line < x.Rbrace.Line { // add a blank before the opening { for multi-line composites // TODO(gri): for now this decision is made by looking at the // source code - it may not be correct if the source // code was badly misformatted in the first place p.print(blank) } } p.print(x.Lbrace, token.LBRACE); p.exprList(x.Lbrace, x.Elts, 1, mode, multiLine); p.print(x.Rbrace, token.RBRACE); case *ast.Ellipsis: p.print(token.ELLIPSIS) case *ast.ArrayType: p.print(token.LBRACK); if x.Len != nil { p.expr(x.Len, multiLine) } p.print(token.RBRACK); optSemi = p.expr(x.Elt, multiLine); case *ast.StructType: p.print(token.STRUCT); p.fieldList(x.Lbrace, x.Fields, x.Rbrace, x.Incomplete, ctxt|structType); optSemi = true; case *ast.FuncType: p.print(token.FUNC); optSemi = p.signature(x.Params, x.Results, multiLine); case *ast.InterfaceType: p.print(token.INTERFACE); p.fieldList(x.Lbrace, x.Methods, x.Rbrace, x.Incomplete, ctxt); optSemi = true; case *ast.MapType: p.print(token.MAP, token.LBRACK); p.expr(x.Key, multiLine); p.print(token.RBRACK); optSemi = p.expr(x.Value, multiLine); case *ast.ChanType: switch x.Dir { case ast.SEND | ast.RECV: p.print(token.CHAN) case ast.RECV: p.print(token.ARROW, token.CHAN) case ast.SEND: p.print(token.CHAN, token.ARROW) } p.print(blank); optSemi = p.expr(x.Value, multiLine); default: panic("unreachable") } return; } func (p *printer) expr0(x ast.Expr, depth int, multiLine *bool) (optSemi bool) { return p.expr1(x, token.LowestPrec, depth, 0, multiLine) } // Returns true if a separating semicolon is optional. // Sets multiLine to true if the expression spans multiple lines. func (p *printer) expr(x ast.Expr, multiLine *bool) (optSemi bool) { const depth = 1; return p.expr1(x, token.LowestPrec, depth, 0, multiLine); } // ---------------------------------------------------------------------------- // Statements const maxStmtNewlines = 2 // maximum number of newlines between statements // Print the statement list indented, but without a newline after the last statement. // Extra line breaks between statements in the source are respected but at most one // empty line is printed between statements. func (p *printer) stmtList(list []ast.Stmt, _indent int) { // TODO(gri): fix _indent code if _indent > 0 { p.print(indent) } var multiLine bool; for i, s := range list { // _indent == 0 only for lists of switch/select case clauses; // in those cases each clause is a new section p.linebreak(s.Pos().Line, 1, maxStmtNewlines, ignore, i == 0 || _indent == 0 || multiLine); multiLine = false; if !p.stmt(s, &multiLine) && (!fewerSemis || len(list) > 1) { p.print(token.SEMICOLON) } } if _indent > 0 { p.print(unindent) } } // block prints an *ast.BlockStmt; it always spans at least two lines. func (p *printer) block(s *ast.BlockStmt, indent int) { p.print(s.Pos(), token.LBRACE); p.stmtList(s.List, indent); p.linebreak(s.Rbrace.Line, 1, maxStmtNewlines, ignore, true); p.print(s.Rbrace, token.RBRACE); } // TODO(gri): Decide if this should be used more broadly. The printing code // knows when to insert parentheses for precedence reasons, but // need to be careful to keep them around type expressions. func stripParens(x ast.Expr) ast.Expr { if px, hasParens := x.(*ast.ParenExpr); hasParens { return stripParens(px.X) } return x; } func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) { p.print(blank); needsBlank := false; if init == nil && post == nil { // no semicolons required if expr != nil { p.expr(stripParens(expr), ignoreMultiLine); needsBlank = true; } } else { // all semicolons required // (they are not separators, print them explicitly) if init != nil { p.stmt(init, ignoreMultiLine) } p.print(token.SEMICOLON, blank); if expr != nil { p.expr(stripParens(expr), ignoreMultiLine); needsBlank = true; } if isForStmt { p.print(token.SEMICOLON, blank); needsBlank = false; if post != nil { p.stmt(post, ignoreMultiLine); needsBlank = true; } } } if needsBlank { p.print(blank) } } // Returns true if a separating semicolon is optional. // Sets multiLine to true if the statements spans multiple lines. func (p *printer) stmt(stmt ast.Stmt, multiLine *bool) (optSemi bool) { p.print(stmt.Pos()); switch s := stmt.(type) { case *ast.BadStmt: p.print("BadStmt") case *ast.DeclStmt: p.decl(s.Decl, inStmtList, multiLine); optSemi = true; // decl prints terminating semicolon if necessary case *ast.EmptyStmt: // nothing to do case *ast.LabeledStmt: // a "correcting" unindent immediately following a line break // is applied before the line break if there is no comment // between (see writeWhitespace) p.print(unindent); p.expr(s.Label, multiLine); p.print(token.COLON, vtab, indent); p.linebreak(s.Stmt.Pos().Line, 0, 1, ignore, true); optSemi = p.stmt(s.Stmt, multiLine); case *ast.ExprStmt: const depth = 1; p.expr0(s.X, depth, multiLine); case *ast.IncDecStmt: const depth = 1; p.expr0(s.X, depth+1, multiLine); p.print(s.Tok); case *ast.AssignStmt: var depth = 1; if len(s.Lhs) > 1 && len(s.Rhs) > 1 { depth++ } p.exprList(s.Pos(), s.Lhs, depth, commaSep, multiLine); p.print(blank, s.TokPos, s.Tok); p.exprList(s.TokPos, s.Rhs, depth, blankStart|commaSep, multiLine); case *ast.GoStmt: p.print(token.GO, blank); p.expr(s.Call, multiLine); case *ast.DeferStmt: p.print(token.DEFER, blank); p.expr(s.Call, multiLine); case *ast.ReturnStmt: p.print(token.RETURN); if s.Results != nil { p.exprList(s.Pos(), s.Results, 1, blankStart|commaSep, multiLine) } case *ast.BranchStmt: p.print(s.Tok); if s.Label != nil { p.print(blank); p.expr(s.Label, multiLine); } case *ast.BlockStmt: p.block(s, 1); *multiLine = true; optSemi = true; case *ast.IfStmt: p.print(token.IF); p.controlClause(false, s.Init, s.Cond, nil); p.block(s.Body, 1); *multiLine = true; optSemi = true; if s.Else != nil { p.print(blank, token.ELSE, blank); switch s.Else.(type) { case *ast.BlockStmt, *ast.IfStmt: optSemi = p.stmt(s.Else, ignoreMultiLine) default: p.print(token.LBRACE, indent, formfeed); p.stmt(s.Else, ignoreMultiLine); p.print(unindent, formfeed, token.RBRACE); } } case *ast.CaseClause: if s.Values != nil { p.print(token.CASE); p.exprList(s.Pos(), s.Values, 1, blankStart|commaSep, multiLine); } else { p.print(token.DEFAULT) } p.print(s.Colon, token.COLON); p.stmtList(s.Body, 1); optSemi = true; // "block" without {}'s case *ast.SwitchStmt: p.print(token.SWITCH); p.controlClause(false, s.Init, s.Tag, nil); p.block(s.Body, 0); *multiLine = true; optSemi = true; case *ast.TypeCaseClause: if s.Types != nil { p.print(token.CASE); p.exprList(s.Pos(), s.Types, 1, blankStart|commaSep, multiLine); } else { p.print(token.DEFAULT) } p.print(s.Colon, token.COLON); p.stmtList(s.Body, 1); optSemi = true; // "block" without {}'s case *ast.TypeSwitchStmt: p.print(token.SWITCH); if s.Init != nil { p.print(blank); p.stmt(s.Init, ignoreMultiLine); p.print(token.SEMICOLON); } p.print(blank); p.stmt(s.Assign, ignoreMultiLine); p.print(blank); p.block(s.Body, 0); *multiLine = true; optSemi = true; case *ast.CommClause: if s.Rhs != nil { p.print(token.CASE, blank); if s.Lhs != nil { p.expr(s.Lhs, multiLine); p.print(blank, s.Tok, blank); } p.expr(s.Rhs, multiLine); } else { p.print(token.DEFAULT) } p.print(s.Colon, token.COLON); p.stmtList(s.Body, 1); optSemi = true; // "block" without {}'s case *ast.SelectStmt: p.print(token.SELECT, blank); p.block(s.Body, 0); *multiLine = true; optSemi = true; case *ast.ForStmt: p.print(token.FOR); p.controlClause(true, s.Init, s.Cond, s.Post); p.block(s.Body, 1); *multiLine = true; optSemi = true; case *ast.RangeStmt: p.print(token.FOR, blank); p.expr(s.Key, multiLine); if s.Value != nil { p.print(token.COMMA, blank); p.expr(s.Value, multiLine); } p.print(blank, s.TokPos, s.Tok, blank, token.RANGE, blank); p.expr(s.X, multiLine); p.print(blank); p.block(s.Body, 1); *multiLine = true; optSemi = true; default: panic("unreachable") } return; } // ---------------------------------------------------------------------------- // Declarations type declContext uint const ( atTop declContext = iota; inGroup; inStmtList; ) // The parameter n is the number of specs in the group; context specifies // the surroundings of the declaration. Separating semicolons are printed // depending on the context. Sets multiLine to true if the spec spans // multiple lines. // func (p *printer) spec(spec ast.Spec, n int, context declContext, multiLine *bool) { var ( optSemi bool; // true if a semicolon is optional comment *ast.CommentGroup; // a line comment, if any extraTabs int; // number of extra tabs before comment, if any ) switch s := spec.(type) { case *ast.ImportSpec: p.leadComment(s.Doc); if s.Name != nil { p.expr(s.Name, multiLine); p.print(blank); } p.expr(&ast.StringList{s.Path}, multiLine); comment = s.Comment; case *ast.ValueSpec: p.leadComment(s.Doc); p.identList(s.Names, multiLine); // always present if n == 1 { if s.Type != nil { p.print(blank); optSemi = p.expr(s.Type, multiLine); } if s.Values != nil { p.print(blank, token.ASSIGN); p.exprList(noPos, s.Values, 1, blankStart|commaSep, multiLine); optSemi = false; } } else { extraTabs = 2; if s.Type != nil || s.Values != nil { p.print(vtab) } if s.Type != nil { optSemi = p.expr(s.Type, multiLine); extraTabs = 1; } if s.Values != nil { p.print(vtab); p.print(token.ASSIGN); p.exprList(noPos, s.Values, 1, blankStart|commaSep, multiLine); optSemi = false; extraTabs = 0; } } comment = s.Comment; case *ast.TypeSpec: p.leadComment(s.Doc); p.expr(s.Name, multiLine); if n == 1 { p.print(blank) } else { p.print(vtab) } optSemi = p.expr(s.Type, multiLine); comment = s.Comment; default: panic("unreachable") } if context == inGroup || context == inStmtList && !optSemi { p.print(token.SEMICOLON) } if comment != nil { for ; extraTabs > 0; extraTabs-- { p.print(vtab) } p.lineComment(comment); } } // Sets multiLine to true if the declaration spans multiple lines. func (p *printer) genDecl(d *ast.GenDecl, context declContext, multiLine *bool) { p.leadComment(d.Doc); p.print(d.Pos(), d.Tok, blank); if d.Lparen.IsValid() { // group of parenthesized declarations p.print(d.Lparen, token.LPAREN); if len(d.Specs) > 0 { p.print(indent, formfeed); var ml bool; for i, s := range d.Specs { if i > 0 { p.linebreak(s.Pos().Line, 1, 2, ignore, ml) } ml = false; p.spec(s, len(d.Specs), inGroup, &ml); } p.print(unindent, formfeed); *multiLine = true; } p.print(d.Rparen, token.RPAREN); } else { // single declaration p.spec(d.Specs[0], 1, context, multiLine) } } // nodeSize determines the size of n in chars after formatting. // The result is <= maxSize if the node fits on one line with at // most maxSize chars and the formatted output doesn't contain // any control chars. Otherwise, the result is > maxSize. // func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) { size = maxSize + 1; // assume n doesn't fit // nodeSize computation must be indendent of particular // style so that we always get the same decision; print // in RawFormat cfg := Config{Mode: RawFormat}; var buf bytes.Buffer; if _, err := cfg.Fprint(&buf, n); err != nil { return } if buf.Len() <= maxSize { for _, ch := range buf.Bytes() { if ch < ' ' { return } } size = buf.Len(); // n fits } return; } func (p *printer) isOneLineFunc(b *ast.BlockStmt, headerSize int) bool { const maxSize = 90; // adjust as appropriate, this is an approximate value bodySize := 0; switch { case len(b.List) > 1 || p.commentBefore(b.Rbrace): return false // too many statements or there is a comment - all bets are off case len(b.List) == 1: bodySize = p.nodeSize(b.List[0], maxSize) } // require both headers and overall size to be not "too large" return headerSize <= maxSize/2 && headerSize+bodySize <= maxSize; } // Sets multiLine to true if the function body spans multiple lines. func (p *printer) funcBody(b *ast.BlockStmt, headerSize int, isLit bool, multiLine *bool) { if b == nil { return } if p.isOneLineFunc(b, headerSize) { sep := vtab; if isLit { sep = blank } if len(b.List) > 0 { p.print(sep, b.Pos(), token.LBRACE, blank); p.stmt(b.List[0], ignoreMultiLine); p.print(blank, b.Rbrace, token.RBRACE); } else { p.print(sep, b.Pos(), token.LBRACE, b.Rbrace, token.RBRACE) } return; } p.print(blank); p.block(b, 1); *multiLine = true; } // distance returns the column difference between from and to if both // are on the same line; if they are on different lines (or unknown) // the result is infinity (1<<30). func distance(from, to token.Position) int { if from.IsValid() && to.IsValid() && from.Line == to.Line { return to.Column - from.Column } return 1 << 30; } // Sets multiLine to true if the declaration spans multiple lines. func (p *printer) funcDecl(d *ast.FuncDecl, multiLine *bool) { p.leadComment(d.Doc); p.print(d.Pos(), token.FUNC, blank); if recv := d.Recv; recv != nil { // method: print receiver p.print(token.LPAREN); if len(recv.Names) > 0 { p.expr(recv.Names[0], multiLine); p.print(blank); } p.expr(recv.Type, multiLine); p.print(token.RPAREN, blank); } p.expr(d.Name, multiLine); p.signature(d.Type.Params, d.Type.Results, multiLine); p.funcBody(d.Body, distance(d.Pos(), p.pos), false, multiLine); } // Sets multiLine to true if the declaration spans multiple lines. func (p *printer) decl(decl ast.Decl, context declContext, multiLine *bool) { switch d := decl.(type) { case *ast.BadDecl: p.print(d.Pos(), "BadDecl") case *ast.GenDecl: p.genDecl(d, context, multiLine) case *ast.FuncDecl: p.funcDecl(d, multiLine) default: panic("unreachable") } } // ---------------------------------------------------------------------------- // Files const maxDeclNewlines = 3 // maximum number of newlines between declarations func declToken(decl ast.Decl) (tok token.Token) { tok = token.ILLEGAL; switch d := decl.(type) { case *ast.GenDecl: tok = d.Tok case *ast.FuncDecl: tok = token.FUNC } return; } func (p *printer) file(src *ast.File) { p.leadComment(src.Doc); p.print(src.Pos(), token.PACKAGE, blank); p.expr(src.Name, ignoreMultiLine); if len(src.Decls) > 0 { tok := token.ILLEGAL; for _, d := range src.Decls { prev := tok; tok = declToken(d); // if the declaration token changed (e.g., from CONST to TYPE) // print an empty line between top-level declarations min := 1; if prev != tok { min = 2 } p.linebreak(d.Pos().Line, min, maxDeclNewlines, ignore, false); p.decl(d, atTop, ignoreMultiLine); } } p.print(newline); }