// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package png import ( "bufio"; "compress/zlib"; "hash/crc32"; "image"; "io"; "os"; "strconv"; ) type encoder struct { w io.Writer; m image.Image; colorType uint8; err os.Error; header [8]byte; footer [4]byte; tmp [3 * 256]byte; } // Big-endian. func writeUint32(b []uint8, u uint32) { b[0] = uint8(u >> 24); b[1] = uint8(u >> 16); b[2] = uint8(u >> 8); b[3] = uint8(u >> 0); } // Returns whether or not the image is fully opaque. func opaque(m image.Image) bool { for y := 0; y < m.Height(); y++ { for x := 0; x < m.Width(); x++ { _, _, _, a := m.At(x, y).RGBA(); if a != 0xffffffff { return false } } } return true; } // The absolute value of a byte interpreted as a signed int8. func abs8(d uint8) int { if d < 128 { return int(d) } return 256 - int(d); } func (e *encoder) writeChunk(b []byte, name string) { if e.err != nil { return } n := uint32(len(b)); if int(n) != len(b) { e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b))); return; } writeUint32(e.header[0:4], n); e.header[4] = name[0]; e.header[5] = name[1]; e.header[6] = name[2]; e.header[7] = name[3]; crc := crc32.NewIEEE(); crc.Write(e.header[4:8]); crc.Write(b); writeUint32(e.footer[0:4], crc.Sum32()); _, e.err = e.w.Write(e.header[0:8]); if e.err != nil { return } _, e.err = e.w.Write(b); if e.err != nil { return } _, e.err = e.w.Write(e.footer[0:4]); } func (e *encoder) writeIHDR() { writeUint32(e.tmp[0:4], uint32(e.m.Width())); writeUint32(e.tmp[4:8], uint32(e.m.Height())); e.tmp[8] = 8; // bit depth e.tmp[9] = e.colorType; e.tmp[10] = 0; // default compression method e.tmp[11] = 0; // default filter method e.tmp[12] = 0; // non-interlaced e.writeChunk(e.tmp[0:13], "IHDR"); } func (e *encoder) writePLTE(p image.PalettedColorModel) { if len(p) < 1 || len(p) > 256 { e.err = FormatError("bad palette length: " + strconv.Itoa(len(p))); return; } for i := 0; i < len(p); i++ { r, g, b, a := p[i].RGBA(); if a != 0xffffffff { e.err = UnsupportedError("non-opaque palette color"); return; } e.tmp[3*i+0] = uint8(r >> 24); e.tmp[3*i+1] = uint8(g >> 24); e.tmp[3*i+2] = uint8(b >> 24); } e.writeChunk(e.tmp[0:3*len(p)], "PLTE"); } // An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks, // including an 8-byte header and 4-byte CRC checksum per Write call. Such calls // should be relatively infrequent, since writeIDATs uses a bufio.Writer. // // This method should only be called from writeIDATs (via writeImage). // No other code should treat an encoder as an io.Writer. // // Note that, because the zlib deflater may involve an io.Pipe, e.Write calls may // occur on a separate go-routine than the e.writeIDATs call, and care should be // taken that e's state (such as its tmp buffer) is not modified concurrently. func (e *encoder) Write(b []byte) (int, os.Error) { e.writeChunk(b, "IDAT"); if e.err != nil { return 0, e.err } return len(b), nil; } // Chooses the filter to use for encoding the current row, and applies it. // The return value is the index of the filter and also of the row in cr that has had it applied. func filter(cr [][]byte, pr []byte, bpp int) int { // We try all five filter types, and pick the one that minimizes the sum of absolute differences. // This is the same heuristic that libpng uses, although the filters are attempted in order of // estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than // in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth). cdat0 := cr[0][1:]; cdat1 := cr[1][1:]; cdat2 := cr[2][1:]; cdat3 := cr[3][1:]; cdat4 := cr[4][1:]; pdat := pr[1:]; n := len(cdat0); // The up filter. sum := 0; for i := 0; i < n; i++ { cdat2[i] = cdat0[i] - pdat[i]; sum += abs8(cdat2[i]); } best := sum; filter := ftUp; // The Paeth filter. sum = 0; for i := 0; i < bpp; i++ { cdat4[i] = cdat0[i] - paeth(0, pdat[i], 0); sum += abs8(cdat4[i]); } for i := bpp; i < n; i++ { cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp]); sum += abs8(cdat4[i]); if sum >= best { break } } if sum < best { best = sum; filter = ftPaeth; } // The none filter. sum = 0; for i := 0; i < n; i++ { sum += abs8(cdat0[i]); if sum >= best { break } } if sum < best { best = sum; filter = ftNone; } // The sub filter. sum = 0; for i := 0; i < bpp; i++ { cdat1[i] = cdat0[i]; sum += abs8(cdat1[i]); } for i := bpp; i < n; i++ { cdat1[i] = cdat0[i] - cdat0[i-bpp]; sum += abs8(cdat1[i]); if sum >= best { break } } if sum < best { best = sum; filter = ftSub; } // The average filter. sum = 0; for i := 0; i < bpp; i++ { cdat3[i] = cdat0[i] - pdat[i]/2; sum += abs8(cdat3[i]); } for i := bpp; i < n; i++ { cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2); sum += abs8(cdat3[i]); if sum >= best { break } } if sum < best { best = sum; filter = ftAverage; } return filter; } func writeImage(w io.Writer, m image.Image, ct uint8) os.Error { zw, err := zlib.NewDeflater(w); if err != nil { return err } defer zw.Close(); bpp := 0; // Bytes per pixel. var paletted *image.Paletted; switch ct { case ctTrueColor: bpp = 3 case ctPaletted: bpp = 1; paletted = m.(*image.Paletted); case ctTrueColorAlpha: bpp = 4 } // cr[*] and pr are the bytes for the current and previous row. // cr[0] is unfiltered (or equivalently, filtered with the ftNone filter). // cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the // other PNG filter types. These buffers are allocated once and re-used for each row. // The +1 is for the per-row filter type, which is at cr[*][0]. var cr [nFilter][]uint8; for i := 0; i < len(cr); i++ { cr[i] = make([]uint8, 1+bpp*m.Width()); cr[i][0] = uint8(i); } pr := make([]uint8, 1+bpp*m.Width()); for y := 0; y < m.Height(); y++ { // Convert from colors to bytes. switch ct { case ctTrueColor: for x := 0; x < m.Width(); x++ { // We have previously verified that the alpha value is fully opaque. r, g, b, _ := m.At(x, y).RGBA(); cr[0][3*x+1] = uint8(r >> 24); cr[0][3*x+2] = uint8(g >> 24); cr[0][3*x+3] = uint8(b >> 24); } case ctPaletted: for x := 0; x < m.Width(); x++ { cr[0][x+1] = paletted.ColorIndexAt(x, y) } case ctTrueColorAlpha: // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. for x := 0; x < m.Width(); x++ { c := image.NRGBAColorModel.Convert(m.At(x, y)).(image.NRGBAColor); cr[0][4*x+1] = c.R; cr[0][4*x+2] = c.G; cr[0][4*x+3] = c.B; cr[0][4*x+4] = c.A; } } // Apply the filter. f := filter(cr[0:nFilter], pr, bpp); // Write the compressed bytes. _, err = zw.Write(cr[f]); if err != nil { return err } // The current row for y is the previous row for y+1. pr, cr[0] = cr[0], pr; } return nil; } // Write the actual image data to one or more IDAT chunks. func (e *encoder) writeIDATs() { if e.err != nil { return } var bw *bufio.Writer; bw, e.err = bufio.NewWriterSize(e, 1<<15); if e.err != nil { return } e.err = writeImage(bw, e.m, e.colorType); if e.err != nil { return } e.err = bw.Flush(); } func (e *encoder) writeIEND() { e.writeChunk(e.tmp[0:0], "IEND") } // Encode writes the Image m to w in PNG format. Any Image may be encoded, but // images that are not image.NRGBA might be encoded lossily. func Encode(w io.Writer, m image.Image) os.Error { // Obviously, negative widths and heights are invalid. Furthermore, the PNG // spec section 11.2.2 says that zero is invalid. Excessively large images are // also rejected. mw, mh := int64(m.Width()), int64(m.Height()); if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 { return FormatError("invalid image size: " + strconv.Itoa64(mw) + "x" + strconv.Itoa64(mw)) } var e encoder; e.w = w; e.m = m; e.colorType = uint8(ctTrueColorAlpha); pal, _ := m.(*image.Paletted); if pal != nil { e.colorType = ctPaletted } else if opaque(m) { e.colorType = ctTrueColor } _, e.err = io.WriteString(w, pngHeader); e.writeIHDR(); if pal != nil { e.writePLTE(pal.Palette) } e.writeIDATs(); e.writeIEND(); return e.err; }