// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // DNS packet assembly. See RFC 1035. // // This is intended to support name resolution during net.Dial. // It doesn't have to be blazing fast. // // Rather than write the usual handful of routines to pack and // unpack every message that can appear on the wire, we use // reflection to write a generic pack/unpack for structs and then // use it. Thus, if in the future we need to define new message // structs, no new pack/unpack/printing code needs to be written. // // The first half of this file defines the DNS message formats. // The second half implements the conversion to and from wire format. // A few of the structure elements have string tags to aid the // generic pack/unpack routines. // // TODO(rsc) There are enough names defined in this file that they're all // prefixed with _DNS_. Perhaps put this in its own package later. package net import ( "fmt"; "os"; "reflect"; ) // Packet formats // Wire constants. const ( // valid _DNS_RR_Header.Rrtype and _DNS_Question.qtype _DNS_TypeA = 1; _DNS_TypeNS = 2; _DNS_TypeMD = 3; _DNS_TypeMF = 4; _DNS_TypeCNAME = 5; _DNS_TypeSOA = 6; _DNS_TypeMB = 7; _DNS_TypeMG = 8; _DNS_TypeMR = 9; _DNS_TypeNULL = 10; _DNS_TypeWKS = 11; _DNS_TypePTR = 12; _DNS_TypeHINFO = 13; _DNS_TypeMINFO = 14; _DNS_TypeMX = 15; _DNS_TypeTXT = 16; // valid _DNS_Question.qtype only _DNS_TypeAXFR = 252; _DNS_TypeMAILB = 253; _DNS_TypeMAILA = 254; _DNS_TypeALL = 255; // valid _DNS_Question.qclass _DNS_ClassINET = 1; _DNS_ClassCSNET = 2; _DNS_ClassCHAOS = 3; _DNS_ClassHESIOD = 4; _DNS_ClassANY = 255; // _DNS_Msg.rcode _DNS_RcodeSuccess = 0; _DNS_RcodeFormatError = 1; _DNS_RcodeServerFailure = 2; _DNS_RcodeNameError = 3; _DNS_RcodeNotImplemented = 4; _DNS_RcodeRefused = 5; ) // The wire format for the DNS packet header. type __DNS_Header struct { Id uint16; Bits uint16; Qdcount, Ancount, Nscount, Arcount uint16; } const ( // __DNS_Header.Bits _QR = 1 << 15; // query/response (response=1) _AA = 1 << 10; // authoritative _TC = 1 << 9; // truncated _RD = 1 << 8; // recursion desired _RA = 1 << 7; // recursion available ) // DNS queries. type _DNS_Question struct { Name string "domain-name"; // "domain-name" specifies encoding; see packers below Qtype uint16; Qclass uint16; } // DNS responses (resource records). // There are many types of messages, // but they all share the same header. type _DNS_RR_Header struct { Name string "domain-name"; Rrtype uint16; Class uint16; Ttl uint32; Rdlength uint16; // length of data after header } func (h *_DNS_RR_Header) Header() *_DNS_RR_Header { return h } type _DNS_RR interface { Header() *_DNS_RR_Header; } // Specific DNS RR formats for each query type. type _DNS_RR_CNAME struct { Hdr _DNS_RR_Header; Cname string "domain-name"; } func (rr *_DNS_RR_CNAME) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_HINFO struct { Hdr _DNS_RR_Header; Cpu string; Os string; } func (rr *_DNS_RR_HINFO) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_MB struct { Hdr _DNS_RR_Header; Mb string "domain-name"; } func (rr *_DNS_RR_MB) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_MG struct { Hdr _DNS_RR_Header; Mg string "domain-name"; } func (rr *_DNS_RR_MG) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_MINFO struct { Hdr _DNS_RR_Header; Rmail string "domain-name"; Email string "domain-name"; } func (rr *_DNS_RR_MINFO) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_MR struct { Hdr _DNS_RR_Header; Mr string "domain-name"; } func (rr *_DNS_RR_MR) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_MX struct { Hdr _DNS_RR_Header; Pref uint16; Mx string "domain-name"; } func (rr *_DNS_RR_MX) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_NS struct { Hdr _DNS_RR_Header; Ns string "domain-name"; } func (rr *_DNS_RR_NS) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_PTR struct { Hdr _DNS_RR_Header; Ptr string "domain-name"; } func (rr *_DNS_RR_PTR) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_SOA struct { Hdr _DNS_RR_Header; Ns string "domain-name"; Mbox string "domain-name"; Serial uint32; Refresh uint32; Retry uint32; Expire uint32; Minttl uint32; } func (rr *_DNS_RR_SOA) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_TXT struct { Hdr _DNS_RR_Header; Txt string; // not domain name } func (rr *_DNS_RR_TXT) Header() *_DNS_RR_Header { return &rr.Hdr } type _DNS_RR_A struct { Hdr _DNS_RR_Header; A uint32 "ipv4"; } func (rr *_DNS_RR_A) Header() *_DNS_RR_Header { return &rr.Hdr } // Packing and unpacking. // // All the packers and unpackers take a (msg []byte, off int) // and return (off1 int, ok bool). If they return ok==false, they // also return off1==len(msg), so that the next unpacker will // also fail. This lets us avoid checks of ok until the end of a // packing sequence. // Map of constructors for each RR wire type. var rr_mk = map[int]func() _DNS_RR{ _DNS_TypeCNAME: func() _DNS_RR { return new(_DNS_RR_CNAME) }, _DNS_TypeHINFO: func() _DNS_RR { return new(_DNS_RR_HINFO) }, _DNS_TypeMB: func() _DNS_RR { return new(_DNS_RR_MB) }, _DNS_TypeMG: func() _DNS_RR { return new(_DNS_RR_MG) }, _DNS_TypeMINFO: func() _DNS_RR { return new(_DNS_RR_MINFO) }, _DNS_TypeMR: func() _DNS_RR { return new(_DNS_RR_MR) }, _DNS_TypeMX: func() _DNS_RR { return new(_DNS_RR_MX) }, _DNS_TypeNS: func() _DNS_RR { return new(_DNS_RR_NS) }, _DNS_TypePTR: func() _DNS_RR { return new(_DNS_RR_PTR) }, _DNS_TypeSOA: func() _DNS_RR { return new(_DNS_RR_SOA) }, _DNS_TypeTXT: func() _DNS_RR { return new(_DNS_RR_TXT) }, _DNS_TypeA: func() _DNS_RR { return new(_DNS_RR_A) }, } // Pack a domain name s into msg[off:]. // Domain names are a sequence of counted strings // split at the dots. They end with a zero-length string. func packDomainName(s string, msg []byte, off int) (off1 int, ok bool) { // Add trailing dot to canonicalize name. if n := len(s); n == 0 || s[n-1] != '.' { s += "." } // Each dot ends a segment of the name. // We trade each dot byte for a length byte. // There is also a trailing zero. // Check that we have all the space we need. tot := len(s) + 1; if off+tot > len(msg) { return len(msg), false } // Emit sequence of counted strings, chopping at dots. begin := 0; for i := 0; i < len(s); i++ { if s[i] == '.' { if i-begin >= 1<<6 { // top two bits of length must be clear return len(msg), false } msg[off] = byte(i - begin); off++; for j := begin; j < i; j++ { msg[off] = s[j]; off++; } begin = i + 1; } } msg[off] = 0; off++; return off, true; } // Unpack a domain name. // In addition to the simple sequences of counted strings above, // domain names are allowed to refer to strings elsewhere in the // packet, to avoid repeating common suffixes when returning // many entries in a single domain. The pointers are marked // by a length byte with the top two bits set. Ignoring those // two bits, that byte and the next give a 14 bit offset from msg[0] // where we should pick up the trail. // Note that if we jump elsewhere in the packet, // we return off1 == the offset after the first pointer we found, // which is where the next record will start. // In theory, the pointers are only allowed to jump backward. // We let them jump anywhere and stop jumping after a while. func unpackDomainName(msg []byte, off int) (s string, off1 int, ok bool) { s = ""; ptr := 0; // number of pointers followed Loop: for { if off >= len(msg) { return "", len(msg), false } c := int(msg[off]); off++; switch c & 0xC0 { case 0x00: if c == 0x00 { // end of name break Loop } // literal string if off+c > len(msg) { return "", len(msg), false } s += string(msg[off:off+c]) + "."; off += c; case 0xC0: // pointer to somewhere else in msg. // remember location after first ptr, // since that's how many bytes we consumed. // also, don't follow too many pointers -- // maybe there's a loop. if off >= len(msg) { return "", len(msg), false } c1 := msg[off]; off++; if ptr == 0 { off1 = off } if ptr++; ptr > 10 { return "", len(msg), false } off = (c^0xC0)<<8 | int(c1); default: // 0x80 and 0x40 are reserved return "", len(msg), false } } if ptr == 0 { off1 = off } return s, off1, true; } // TODO(rsc): Move into generic library? // Pack a reflect.StructValue into msg. Struct members can only be uint16, uint32, string, // and other (often anonymous) structs. func packStructValue(val *reflect.StructValue, msg []byte, off int) (off1 int, ok bool) { for i := 0; i < val.NumField(); i++ { f := val.Type().(*reflect.StructType).Field(i); switch fv := val.Field(i).(type) { default: fmt.Fprintf(os.Stderr, "net: dns: unknown packing type %v", f.Type); return len(msg), false; case *reflect.StructValue: off, ok = packStructValue(fv, msg, off) case *reflect.Uint16Value: i := fv.Get(); if off+2 > len(msg) { return len(msg), false } msg[off] = byte(i >> 8); msg[off+1] = byte(i); off += 2; case *reflect.Uint32Value: i := fv.Get(); if off+4 > len(msg) { return len(msg), false } msg[off] = byte(i >> 24); msg[off+1] = byte(i >> 16); msg[off+2] = byte(i >> 8); msg[off+4] = byte(i); off += 4; case *reflect.StringValue: // There are multiple string encodings. // The tag distinguishes ordinary strings from domain names. s := fv.Get(); switch f.Tag { default: fmt.Fprintf(os.Stderr, "net: dns: unknown string tag %v", f.Tag); return len(msg), false; case "domain-name": off, ok = packDomainName(s, msg, off); if !ok { return len(msg), false } case "": // Counted string: 1 byte length. if len(s) > 255 || off+1+len(s) > len(msg) { return len(msg), false } msg[off] = byte(len(s)); off++; for i := 0; i < len(s); i++ { msg[off+i] = s[i] } off += len(s); } } } return off, true; } func structValue(any interface{}) *reflect.StructValue { return reflect.NewValue(any).(*reflect.PtrValue).Elem().(*reflect.StructValue) } func packStruct(any interface{}, msg []byte, off int) (off1 int, ok bool) { off, ok = packStructValue(structValue(any), msg, off); return off, ok; } // TODO(rsc): Move into generic library? // Unpack a reflect.StructValue from msg. // Same restrictions as packStructValue. func unpackStructValue(val *reflect.StructValue, msg []byte, off int) (off1 int, ok bool) { for i := 0; i < val.NumField(); i++ { f := val.Type().(*reflect.StructType).Field(i); switch fv := val.Field(i).(type) { default: fmt.Fprintf(os.Stderr, "net: dns: unknown packing type %v", f.Type); return len(msg), false; case *reflect.StructValue: off, ok = unpackStructValue(fv, msg, off) case *reflect.Uint16Value: if off+2 > len(msg) { return len(msg), false } i := uint16(msg[off])<<8 | uint16(msg[off+1]); fv.Set(i); off += 2; case *reflect.Uint32Value: if off+4 > len(msg) { return len(msg), false } i := uint32(msg[off])<<24 | uint32(msg[off+1])<<16 | uint32(msg[off+2])<<8 | uint32(msg[off+3]); fv.Set(i); off += 4; case *reflect.StringValue: var s string; switch f.Tag { default: fmt.Fprintf(os.Stderr, "net: dns: unknown string tag %v", f.Tag); return len(msg), false; case "domain-name": s, off, ok = unpackDomainName(msg, off); if !ok { return len(msg), false } case "": if off >= len(msg) || off+1+int(msg[off]) > len(msg) { return len(msg), false } n := int(msg[off]); off++; b := make([]byte, n); for i := 0; i < n; i++ { b[i] = msg[off+i] } off += n; s = string(b); } fv.Set(s); } } return off, true; } func unpackStruct(any interface{}, msg []byte, off int) (off1 int, ok bool) { off, ok = unpackStructValue(structValue(any), msg, off); return off, ok; } // Generic struct printer. // Doesn't care about the string tag "domain-name", // but does look for an "ipv4" tag on uint32 variables, // printing them as IP addresses. func printStructValue(val *reflect.StructValue) string { s := "{"; for i := 0; i < val.NumField(); i++ { if i > 0 { s += ", " } f := val.Type().(*reflect.StructType).Field(i); if !f.Anonymous { s += f.Name + "=" } fval := val.Field(i); if fv, ok := fval.(*reflect.StructValue); ok { s += printStructValue(fv) } else if fv, ok := fval.(*reflect.Uint32Value); ok && f.Tag == "ipv4" { i := fv.Get(); s += IPv4(byte(i>>24), byte(i>>16), byte(i>>8), byte(i)).String(); } else { s += fmt.Sprint(fval.Interface()) } } s += "}"; return s; } func printStruct(any interface{}) string { return printStructValue(structValue(any)) } // Resource record packer. func packRR(rr _DNS_RR, msg []byte, off int) (off2 int, ok bool) { var off1 int; // pack twice, once to find end of header // and again to find end of packet. // a bit inefficient but this doesn't need to be fast. // off1 is end of header // off2 is end of rr off1, ok = packStruct(rr.Header(), msg, off); off2, ok = packStruct(rr, msg, off); if !ok { return len(msg), false } // pack a third time; redo header with correct data length rr.Header().Rdlength = uint16(off2 - off1); packStruct(rr.Header(), msg, off); return off2, true; } // Resource record unpacker. func unpackRR(msg []byte, off int) (rr _DNS_RR, off1 int, ok bool) { // unpack just the header, to find the rr type and length var h _DNS_RR_Header; off0 := off; if off, ok = unpackStruct(&h, msg, off); !ok { return nil, len(msg), false } end := off + int(h.Rdlength); // make an rr of that type and re-unpack. // again inefficient but doesn't need to be fast. mk, known := rr_mk[int(h.Rrtype)]; if !known { return &h, end, true } rr = mk(); off, ok = unpackStruct(rr, msg, off0); if off != end { return &h, end, true } return rr, off, ok; } // Usable representation of a DNS packet. // A manually-unpacked version of (id, bits). // This is in its own struct for easy printing. type __DNS_Msg_Top struct { id uint16; response bool; opcode int; authoritative bool; truncated bool; recursion_desired bool; recursion_available bool; rcode int; } type _DNS_Msg struct { __DNS_Msg_Top; question []_DNS_Question; answer []_DNS_RR; ns []_DNS_RR; extra []_DNS_RR; } func (dns *_DNS_Msg) Pack() (msg []byte, ok bool) { var dh __DNS_Header; // Convert convenient _DNS_Msg into wire-like __DNS_Header. dh.Id = dns.id; dh.Bits = uint16(dns.opcode)<<11 | uint16(dns.rcode); if dns.recursion_available { dh.Bits |= _RA } if dns.recursion_desired { dh.Bits |= _RD } if dns.truncated { dh.Bits |= _TC } if dns.authoritative { dh.Bits |= _AA } if dns.response { dh.Bits |= _QR } // Prepare variable sized arrays. question := dns.question; answer := dns.answer; ns := dns.ns; extra := dns.extra; dh.Qdcount = uint16(len(question)); dh.Ancount = uint16(len(answer)); dh.Nscount = uint16(len(ns)); dh.Arcount = uint16(len(extra)); // Could work harder to calculate message size, // but this is far more than we need and not // big enough to hurt the allocator. msg = make([]byte, 2000); // Pack it in: header and then the pieces. off := 0; off, ok = packStruct(&dh, msg, off); for i := 0; i < len(question); i++ { off, ok = packStruct(&question[i], msg, off) } for i := 0; i < len(answer); i++ { off, ok = packStruct(answer[i], msg, off) } for i := 0; i < len(ns); i++ { off, ok = packStruct(ns[i], msg, off) } for i := 0; i < len(extra); i++ { off, ok = packStruct(extra[i], msg, off) } if !ok { return nil, false } return msg[0:off], true; } func (dns *_DNS_Msg) Unpack(msg []byte) bool { // Header. var dh __DNS_Header; off := 0; var ok bool; if off, ok = unpackStruct(&dh, msg, off); !ok { return false } dns.id = dh.Id; dns.response = (dh.Bits & _QR) != 0; dns.opcode = int(dh.Bits>>11) & 0xF; dns.authoritative = (dh.Bits & _AA) != 0; dns.truncated = (dh.Bits & _TC) != 0; dns.recursion_desired = (dh.Bits & _RD) != 0; dns.recursion_available = (dh.Bits & _RA) != 0; dns.rcode = int(dh.Bits & 0xF); // Arrays. dns.question = make([]_DNS_Question, dh.Qdcount); dns.answer = make([]_DNS_RR, dh.Ancount); dns.ns = make([]_DNS_RR, dh.Nscount); dns.extra = make([]_DNS_RR, dh.Arcount); for i := 0; i < len(dns.question); i++ { off, ok = unpackStruct(&dns.question[i], msg, off) } for i := 0; i < len(dns.answer); i++ { dns.answer[i], off, ok = unpackRR(msg, off) } for i := 0; i < len(dns.ns); i++ { dns.ns[i], off, ok = unpackRR(msg, off) } for i := 0; i < len(dns.extra); i++ { dns.extra[i], off, ok = unpackRR(msg, off) } if !ok { return false } // if off != len(msg) { // println("extra bytes in dns packet", off, "<", len(msg)); // } return true; } func (dns *_DNS_Msg) String() string { s := "DNS: " + printStruct(&dns.__DNS_Msg_Top) + "\n"; if len(dns.question) > 0 { s += "-- Questions\n"; for i := 0; i < len(dns.question); i++ { s += printStruct(&dns.question[i]) + "\n" } } if len(dns.answer) > 0 { s += "-- Answers\n"; for i := 0; i < len(dns.answer); i++ { s += printStruct(dns.answer[i]) + "\n" } } if len(dns.ns) > 0 { s += "-- Name servers\n"; for i := 0; i < len(dns.ns); i++ { s += printStruct(dns.ns[i]) + "\n" } } if len(dns.extra) > 0 { s += "-- Extra\n"; for i := 0; i < len(dns.extra); i++ { s += printStruct(dns.extra[i]) + "\n" } } return s; }