// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package regexp implements a simple regular expression library. // // The syntax of the regular expressions accepted is: // // regexp: // concatenation { '|' concatenation } // concatenation: // { closure } // closure: // term [ '*' | '+' | '?' ] // term: // '^' // '$' // '.' // character // '[' [ '^' ] character-ranges ']' // '(' regexp ')' // package regexp import ( "bytes"; "container/vector"; "io"; "os"; "strings"; "utf8"; ) var debug = false // Error codes returned by failures to parse an expression. var ( ErrInternal = os.NewError("internal error"); ErrUnmatchedLpar = os.NewError("unmatched '('"); ErrUnmatchedRpar = os.NewError("unmatched ')'"); ErrUnmatchedLbkt = os.NewError("unmatched '['"); ErrUnmatchedRbkt = os.NewError("unmatched ']'"); ErrBadRange = os.NewError("bad range in character class"); ErrExtraneousBackslash = os.NewError("extraneous backslash"); ErrBadClosure = os.NewError("repeated closure (**, ++, etc.)"); ErrBareClosure = os.NewError("closure applies to nothing"); ErrBadBackslash = os.NewError("illegal backslash escape"); ) // An instruction executed by the NFA type instr interface { kind() int; // the type of this instruction: _CHAR, _ANY, etc. next() instr; // the instruction to execute after this one setNext(i instr); index() int; setIndex(i int); print(); } // Fields and methods common to all instructions type common struct { _next instr; _index int; } func (c *common) next() instr { return c._next } func (c *common) setNext(i instr) { c._next = i } func (c *common) index() int { return c._index } func (c *common) setIndex(i int) { c._index = i } // Regexp is the representation of a compiled regular expression. // The public interface is entirely through methods. type Regexp struct { expr string; // the original expression prefix string; // initial plain text string prefixBytes []byte; // initial plain text bytes inst *vector.Vector; start instr; nbra int; // number of brackets in expression, for subexpressions } const ( _START = iota; // beginning of program _END; // end of program: success _BOT; // '^' beginning of text _EOT; // '$' end of text _CHAR; // 'a' regular character _CHARCLASS; // [a-z] character class _ANY; // '.' any character including newline _NOTNL; // [^\n] special case: any character but newline _BRA; // '(' parenthesized expression _EBRA; // ')'; end of '(' parenthesized expression _ALT; // '|' alternation _NOP; // do nothing; makes it easy to link without patching ) // --- START start of program type _Start struct { common; } func (start *_Start) kind() int { return _START } func (start *_Start) print() { print("start") } // --- END end of program type _End struct { common; } func (end *_End) kind() int { return _END } func (end *_End) print() { print("end") } // --- BOT beginning of text type _Bot struct { common; } func (bot *_Bot) kind() int { return _BOT } func (bot *_Bot) print() { print("bot") } // --- EOT end of text type _Eot struct { common; } func (eot *_Eot) kind() int { return _EOT } func (eot *_Eot) print() { print("eot") } // --- CHAR a regular character type _Char struct { common; char int; } func (char *_Char) kind() int { return _CHAR } func (char *_Char) print() { print("char ", string(char.char)) } func newChar(char int) *_Char { c := new(_Char); c.char = char; return c; } // --- CHARCLASS [a-z] type _CharClass struct { common; char int; negate bool; // is character class negated? ([^a-z]) // vector of int, stored pairwise: [a-z] is (a,z); x is (x,x): ranges *vector.IntVector; } func (cclass *_CharClass) kind() int { return _CHARCLASS } func (cclass *_CharClass) print() { print("charclass"); if cclass.negate { print(" (negated)") } for i := 0; i < cclass.ranges.Len(); i += 2 { l := cclass.ranges.At(i); r := cclass.ranges.At(i + 1); if l == r { print(" [", string(l), "]") } else { print(" [", string(l), "-", string(r), "]") } } } func (cclass *_CharClass) addRange(a, b int) { // range is a through b inclusive cclass.ranges.Push(a); cclass.ranges.Push(b); } func (cclass *_CharClass) matches(c int) bool { for i := 0; i < cclass.ranges.Len(); i = i + 2 { min := cclass.ranges.At(i); max := cclass.ranges.At(i + 1); if min <= c && c <= max { return !cclass.negate } } return cclass.negate; } func newCharClass() *_CharClass { c := new(_CharClass); c.ranges = new(vector.IntVector); return c; } // --- ANY any character type _Any struct { common; } func (any *_Any) kind() int { return _ANY } func (any *_Any) print() { print("any") } // --- NOTNL any character but newline type _NotNl struct { common; } func (notnl *_NotNl) kind() int { return _NOTNL } func (notnl *_NotNl) print() { print("notnl") } // --- BRA parenthesized expression type _Bra struct { common; n int; // subexpression number } func (bra *_Bra) kind() int { return _BRA } func (bra *_Bra) print() { print("bra", bra.n) } // --- EBRA end of parenthesized expression type _Ebra struct { common; n int; // subexpression number } func (ebra *_Ebra) kind() int { return _EBRA } func (ebra *_Ebra) print() { print("ebra ", ebra.n) } // --- ALT alternation type _Alt struct { common; left instr; // other branch } func (alt *_Alt) kind() int { return _ALT } func (alt *_Alt) print() { print("alt(", alt.left.index(), ")") } // --- NOP no operation type _Nop struct { common; } func (nop *_Nop) kind() int { return _NOP } func (nop *_Nop) print() { print("nop") } func (re *Regexp) add(i instr) instr { i.setIndex(re.inst.Len()); re.inst.Push(i); return i; } type parser struct { re *Regexp; error os.Error; nlpar int; // number of unclosed lpars pos int; ch int; } const endOfFile = -1 func (p *parser) c() int { return p.ch } func (p *parser) nextc() int { if p.pos >= len(p.re.expr) { p.ch = endOfFile } else { c, w := utf8.DecodeRuneInString(p.re.expr[p.pos:]); p.ch = c; p.pos += w; } return p.ch; } func newParser(re *Regexp) *parser { p := new(parser); p.re = re; p.nextc(); // load p.ch return p; } func special(c int) bool { for _, r := range `\.+*?()|[]^$` { if c == r { return true } } return false; } func specialcclass(c int) bool { for _, r := range `\-[]` { if c == r { return true } } return false; } func (p *parser) charClass() instr { cc := newCharClass(); if p.c() == '^' { cc.negate = true; p.nextc(); } left := -1; for { switch c := p.c(); c { case ']', endOfFile: if left >= 0 { p.error = ErrBadRange; return nil; } // Is it [^\n]? if cc.negate && cc.ranges.Len() == 2 && cc.ranges.At(0) == '\n' && cc.ranges.At(1) == '\n' { nl := new(_NotNl); p.re.add(nl); return nl; } // Special common case: "[a]" -> "a" if !cc.negate && cc.ranges.Len() == 2 && cc.ranges.At(0) == cc.ranges.At(1) { c := newChar(cc.ranges.At(0)); p.re.add(c); return c; } p.re.add(cc); return cc; case '-': // do this before backslash processing p.error = ErrBadRange; return nil; case '\\': c = p.nextc(); switch { case c == endOfFile: p.error = ErrExtraneousBackslash; return nil; case c == 'n': c = '\n' case specialcclass(c): // c is as delivered default: p.error = ErrBadBackslash; return nil; } fallthrough; default: p.nextc(); switch { case left < 0: // first of pair if p.c() == '-' { // range p.nextc(); left = c; } else { // single char cc.addRange(c, c) } case left <= c: // second of pair cc.addRange(left, c); left = -1; default: p.error = ErrBadRange; return nil; } } } return nil; } func (p *parser) term() (start, end instr) { // term() is the leaf of the recursion, so it's sufficient to pick off the // error state here for early exit. // The other functions (closure(), concatenation() etc.) assume // it's safe to recur to here. if p.error != nil { return } switch c := p.c(); c { case '|', endOfFile: return nil, nil case '*', '+': p.error = ErrBareClosure; return; case ')': if p.nlpar == 0 { p.error = ErrUnmatchedRpar; return; } return nil, nil; case ']': p.error = ErrUnmatchedRbkt; return; case '^': p.nextc(); start = p.re.add(new(_Bot)); return start, start; case '$': p.nextc(); start = p.re.add(new(_Eot)); return start, start; case '.': p.nextc(); start = p.re.add(new(_Any)); return start, start; case '[': p.nextc(); start = p.charClass(); if p.error != nil { return } if p.c() != ']' { p.error = ErrUnmatchedLbkt; return; } p.nextc(); return start, start; case '(': p.nextc(); p.nlpar++; p.re.nbra++; // increment first so first subexpr is \1 nbra := p.re.nbra; start, end = p.regexp(); if p.c() != ')' { p.error = ErrUnmatchedLpar; return; } p.nlpar--; p.nextc(); bra := new(_Bra); p.re.add(bra); ebra := new(_Ebra); p.re.add(ebra); bra.n = nbra; ebra.n = nbra; if start == nil { if end == nil { p.error = ErrInternal; return; } start = ebra; } else { end.setNext(ebra) } bra.setNext(start); return bra, ebra; case '\\': c = p.nextc(); switch { case c == endOfFile: p.error = ErrExtraneousBackslash; return; case c == 'n': c = '\n' case special(c): // c is as delivered default: p.error = ErrBadBackslash; return; } fallthrough; default: p.nextc(); start = newChar(c); p.re.add(start); return start, start; } panic("unreachable"); } func (p *parser) closure() (start, end instr) { start, end = p.term(); if start == nil || p.error != nil { return } switch p.c() { case '*': // (start,end)*: alt := new(_Alt); p.re.add(alt); end.setNext(alt); // after end, do alt alt.left = start; // alternate brach: return to start start = alt; // alt becomes new (start, end) end = alt; case '+': // (start,end)+: alt := new(_Alt); p.re.add(alt); end.setNext(alt); // after end, do alt alt.left = start; // alternate brach: return to start end = alt; // start is unchanged; end is alt case '?': // (start,end)?: alt := new(_Alt); p.re.add(alt); nop := new(_Nop); p.re.add(nop); alt.left = start; // alternate branch is start alt.setNext(nop); // follow on to nop end.setNext(nop); // after end, go to nop start = alt; // start is now alt end = nop; // end is nop pointed to by both branches default: return } switch p.nextc() { case '*', '+', '?': p.error = ErrBadClosure } return; } func (p *parser) concatenation() (start, end instr) { for { nstart, nend := p.closure(); if p.error != nil { return } switch { case nstart == nil: // end of this concatenation if start == nil { // this is the empty string nop := p.re.add(new(_Nop)); return nop, nop; } return; case start == nil: // this is first element of concatenation start, end = nstart, nend default: end.setNext(nstart); end = nend; } } panic("unreachable"); } func (p *parser) regexp() (start, end instr) { start, end = p.concatenation(); if p.error != nil { return } for { switch p.c() { default: return case '|': p.nextc(); nstart, nend := p.concatenation(); if p.error != nil { return } alt := new(_Alt); p.re.add(alt); alt.left = start; alt.setNext(nstart); nop := new(_Nop); p.re.add(nop); end.setNext(nop); nend.setNext(nop); start, end = alt, nop; } } panic("unreachable"); } func unNop(i instr) instr { for i.kind() == _NOP { i = i.next() } return i; } func (re *Regexp) eliminateNops() { for i := 0; i < re.inst.Len(); i++ { inst := re.inst.At(i).(instr); if inst.kind() == _END { continue } inst.setNext(unNop(inst.next())); if inst.kind() == _ALT { alt := inst.(*_Alt); alt.left = unNop(alt.left); } } } func (re *Regexp) dump() { print("prefix <", re.prefix, ">\n"); for i := 0; i < re.inst.Len(); i++ { inst := re.inst.At(i).(instr); print(inst.index(), ": "); inst.print(); if inst.kind() != _END { print(" -> ", inst.next().index()) } print("\n"); } } func (re *Regexp) doParse() os.Error { p := newParser(re); start := new(_Start); re.add(start); s, e := p.regexp(); if p.error != nil { return p.error } start.setNext(s); re.start = start; e.setNext(re.add(new(_End))); if debug { re.dump(); println(); } re.eliminateNops(); if debug { re.dump(); println(); } if p.error == nil { re.setPrefix(); if debug { re.dump(); println(); } } return p.error; } // Extract regular text from the beginning of the pattern. // That text can be used by doExecute to speed up matching. func (re *Regexp) setPrefix() { var b []byte; var utf = make([]byte, utf8.UTFMax); // First instruction is start; skip that. i := re.inst.At(0).(instr).next().index(); Loop: for i < re.inst.Len() { inst := re.inst.At(i).(instr); // stop if this is not a char if inst.kind() != _CHAR { break } // stop if this char can be followed by a match for an empty string, // which includes closures, ^, and $. switch re.inst.At(inst.next().index()).(instr).kind() { case _BOT, _EOT, _ALT: break Loop } n := utf8.EncodeRune(inst.(*_Char).char, utf); b = bytes.Add(b, utf[0:n]); i = inst.next().index(); } // point start instruction to first non-CHAR re.inst.At(0).(instr).setNext(re.inst.At(i).(instr)); re.prefixBytes = b; re.prefix = string(b); } // Compile parses a regular expression and returns, if successful, a Regexp // object that can be used to match against text. func Compile(str string) (regexp *Regexp, error os.Error) { regexp = new(Regexp); regexp.expr = str; regexp.inst = new(vector.Vector); error = regexp.doParse(); return; } // MustCompile is like Compile but panics if the expression cannot be parsed. // It simplifies safe initialization of global variables holding compiled regular // expressions. func MustCompile(str string) *Regexp { regexp, error := Compile(str); if error != nil { panicln(`regexp: compiling "`, str, `": `, error.String()) } return regexp; } // The match arena allows us to reduce the garbage generated by tossing // match vectors away as we execute. Matches are ref counted and returned // to a free list when no longer active. Increases a simple benchmark by 22X. type matchArena struct { head *matchVec; len int; // length of match vector } type matchVec struct { m []int; // pairs of bracketing submatches. 0th is start,end ref int; next *matchVec; } func (a *matchArena) new() *matchVec { if a.head == nil { const N = 10; block := make([]matchVec, N); for i := 0; i < N; i++ { b := &block[i]; b.next = a.head; a.head = b; } } m := a.head; a.head = m.next; m.ref = 0; if m.m == nil { m.m = make([]int, a.len) } return m; } func (a *matchArena) free(m *matchVec) { m.ref--; if m.ref == 0 { m.next = a.head; a.head = m; } } func (a *matchArena) copy(m *matchVec) *matchVec { m1 := a.new(); copy(m1.m, m.m); return m1; } func (a *matchArena) noMatch() *matchVec { m := a.new(); for i := range m.m { m.m[i] = -1 // no match seen; catches cases like "a(b)?c" on "ac" } m.ref = 1; return m; } type state struct { inst instr; // next instruction to execute match *matchVec; } // Append new state to to-do list. Leftmost-longest wins so avoid // adding a state that's already active. The matchVec will be inc-ref'ed // if it is assigned to a state. func (a *matchArena) addState(s []state, inst instr, match *matchVec, pos, end int) []state { switch inst.kind() { case _BOT: if pos == 0 { s = a.addState(s, inst.next(), match, pos, end) } return s; case _EOT: if pos == end { s = a.addState(s, inst.next(), match, pos, end) } return s; case _BRA: n := inst.(*_Bra).n; match.m[2*n] = pos; s = a.addState(s, inst.next(), match, pos, end); return s; case _EBRA: n := inst.(*_Ebra).n; match.m[2*n+1] = pos; s = a.addState(s, inst.next(), match, pos, end); return s; } index := inst.index(); l := len(s); // States are inserted in order so it's sufficient to see if we have the same // instruction; no need to see if existing match is earlier (it is). for i := 0; i < l; i++ { if s[i].inst.index() == index { return s } } if l == cap(s) { s1 := make([]state, 2*l)[0:l]; copy(s1, s); s = s1; } s = s[0 : l+1]; s[l].inst = inst; s[l].match = match; match.ref++; if inst.kind() == _ALT { s = a.addState(s, inst.(*_Alt).left, a.copy(match), pos, end); // give other branch a copy of this match vector s = a.addState(s, inst.next(), a.copy(match), pos, end); } return s; } // Accepts either string or bytes - the logic is identical either way. // If bytes == nil, scan str. func (re *Regexp) doExecute(str string, bytestr []byte, pos int) []int { var s [2][]state; s[0] = make([]state, 10)[0:0]; s[1] = make([]state, 10)[0:0]; in, out := 0, 1; var final state; found := false; end := len(str); if bytestr != nil { end = len(bytestr) } // fast check for initial plain substring if re.prefix != "" { var advance int; if bytestr == nil { advance = strings.Index(str[pos:], re.prefix) } else { advance = bytes.Index(bytestr[pos:], re.prefixBytes) } if advance == -1 { return []int{} } pos += advance + len(re.prefix); } arena := &matchArena{nil, 2 * (re.nbra + 1)}; for pos <= end { if !found { // prime the pump if we haven't seen a match yet match := arena.noMatch(); match.m[0] = pos; s[out] = arena.addState(s[out], re.start.next(), match, pos, end); arena.free(match); // if addState saved it, ref was incremented } in, out = out, in; // old out state is new in state // clear out old state old := s[out]; for _, state := range old { arena.free(state.match) } s[out] = old[0:0]; // truncate state vector if found && len(s[in]) == 0 { // machine has completed break } charwidth := 1; c := endOfFile; if pos < end { if bytestr == nil { c, charwidth = utf8.DecodeRuneInString(str[pos:end]) } else { c, charwidth = utf8.DecodeRune(bytestr[pos:end]) } } pos += charwidth; for _, st := range s[in] { switch st.inst.kind() { case _BOT: case _EOT: case _CHAR: if c == st.inst.(*_Char).char { s[out] = arena.addState(s[out], st.inst.next(), st.match, pos, end) } case _CHARCLASS: if st.inst.(*_CharClass).matches(c) { s[out] = arena.addState(s[out], st.inst.next(), st.match, pos, end) } case _ANY: if c != endOfFile { s[out] = arena.addState(s[out], st.inst.next(), st.match, pos, end) } case _NOTNL: if c != endOfFile && c != '\n' { s[out] = arena.addState(s[out], st.inst.next(), st.match, pos, end) } case _BRA: case _EBRA: case _ALT: case _END: // choose leftmost longest if !found || // first st.match.m[0] < final.match.m[0] || // leftmost (st.match.m[0] == final.match.m[0] && pos-charwidth > final.match.m[1]) { // longest if final.match != nil { arena.free(final.match) } final = st; final.match.ref++; final.match.m[1] = pos - charwidth; } found = true; default: st.inst.print(); panic("unknown instruction in execute"); } } } if final.match == nil { return nil } // if match found, back up start of match by width of prefix. if re.prefix != "" && len(final.match.m) > 0 { final.match.m[0] -= len(re.prefix) } return final.match.m; } // ExecuteString matches the Regexp against the string s. // The return value is an array of integers, in pairs, identifying the positions of // substrings matched by the expression. // s[a[0]:a[1]] is the substring matched by the entire expression. // s[a[2*i]:a[2*i+1]] for i > 0 is the substring matched by the ith parenthesized subexpression. // A negative value means the subexpression did not match any element of the string. // An empty array means "no match". func (re *Regexp) ExecuteString(s string) (a []int) { return re.doExecute(s, nil, 0) } // Execute matches the Regexp against the byte slice b. // The return value is an array of integers, in pairs, identifying the positions of // subslices matched by the expression. // b[a[0]:a[1]] is the subslice matched by the entire expression. // b[a[2*i]:a[2*i+1]] for i > 0 is the subslice matched by the ith parenthesized subexpression. // A negative value means the subexpression did not match any element of the slice. // An empty array means "no match". func (re *Regexp) Execute(b []byte) (a []int) { return re.doExecute("", b, 0) } // MatchString returns whether the Regexp matches the string s. // The return value is a boolean: true for match, false for no match. func (re *Regexp) MatchString(s string) bool { return len(re.doExecute(s, nil, 0)) > 0 } // Match returns whether the Regexp matches the byte slice b. // The return value is a boolean: true for match, false for no match. func (re *Regexp) Match(b []byte) bool { return len(re.doExecute("", b, 0)) > 0 } // MatchStrings matches the Regexp against the string s. // The return value is an array of strings matched by the expression. // a[0] is the substring matched by the entire expression. // a[i] for i > 0 is the substring matched by the ith parenthesized subexpression. // An empty array means ``no match''. func (re *Regexp) MatchStrings(s string) (a []string) { r := re.doExecute(s, nil, 0); if r == nil { return nil } a = make([]string, len(r)/2); for i := 0; i < len(r); i += 2 { if r[i] != -1 { // -1 means no match for this subexpression a[i/2] = s[r[i]:r[i+1]] } } return; } // MatchSlices matches the Regexp against the byte slice b. // The return value is an array of subslices matched by the expression. // a[0] is the subslice matched by the entire expression. // a[i] for i > 0 is the subslice matched by the ith parenthesized subexpression. // An empty array means ``no match''. func (re *Regexp) MatchSlices(b []byte) (a [][]byte) { r := re.doExecute("", b, 0); if r == nil { return nil } a = make([][]byte, len(r)/2); for i := 0; i < len(r); i += 2 { if r[i] != -1 { // -1 means no match for this subexpression a[i/2] = b[r[i]:r[i+1]] } } return; } // MatchString checks whether a textual regular expression // matches a string. More complicated queries need // to use Compile and the full Regexp interface. func MatchString(pattern string, s string) (matched bool, error os.Error) { re, err := Compile(pattern); if err != nil { return false, err } return re.MatchString(s), nil; } // Match checks whether a textual regular expression // matches a byte slice. More complicated queries need // to use Compile and the full Regexp interface. func Match(pattern string, b []byte) (matched bool, error os.Error) { re, err := Compile(pattern); if err != nil { return false, err } return re.Match(b), nil; } // ReplaceAllString returns a copy of src in which all matches for the Regexp // have been replaced by repl. No support is provided for expressions // (e.g. \1 or $1) in the replacement string. func (re *Regexp) ReplaceAllString(src, repl string) string { lastMatchEnd := 0; // end position of the most recent match searchPos := 0; // position where we next look for a match buf := new(bytes.Buffer); for searchPos <= len(src) { a := re.doExecute(src, nil, searchPos); if len(a) == 0 { break // no more matches } // Copy the unmatched characters before this match. io.WriteString(buf, src[lastMatchEnd:a[0]]); // Now insert a copy of the replacement string, but not for a // match of the empty string immediately after another match. // (Otherwise, we get double replacement for patterns that // match both empty and nonempty strings.) if a[1] > lastMatchEnd || a[0] == 0 { io.WriteString(buf, repl) } lastMatchEnd = a[1]; // Advance past this match; always advance at least one character. _, width := utf8.DecodeRuneInString(src[searchPos:]); if searchPos+width > a[1] { searchPos += width } else if searchPos+1 > a[1] { // This clause is only needed at the end of the input // string. In that case, DecodeRuneInString returns width=0. searchPos++ } else { searchPos = a[1] } } // Copy the unmatched characters after the last match. io.WriteString(buf, src[lastMatchEnd:]); return buf.String(); } // ReplaceAll returns a copy of src in which all matches for the Regexp // have been replaced by repl. No support is provided for expressions // (e.g. \1 or $1) in the replacement text. func (re *Regexp) ReplaceAll(src, repl []byte) []byte { lastMatchEnd := 0; // end position of the most recent match searchPos := 0; // position where we next look for a match buf := new(bytes.Buffer); for searchPos <= len(src) { a := re.doExecute("", src, searchPos); if len(a) == 0 { break // no more matches } // Copy the unmatched characters before this match. buf.Write(src[lastMatchEnd:a[0]]); // Now insert a copy of the replacement string, but not for a // match of the empty string immediately after another match. // (Otherwise, we get double replacement for patterns that // match both empty and nonempty strings.) if a[1] > lastMatchEnd || a[0] == 0 { buf.Write(repl) } lastMatchEnd = a[1]; // Advance past this match; always advance at least one character. _, width := utf8.DecodeRune(src[searchPos:]); if searchPos+width > a[1] { searchPos += width } else if searchPos+1 > a[1] { // This clause is only needed at the end of the input // string. In that case, DecodeRuneInString returns width=0. searchPos++ } else { searchPos = a[1] } } // Copy the unmatched characters after the last match. buf.Write(src[lastMatchEnd:]); return buf.Bytes(); } // QuoteMeta returns a string that quotes all regular expression metacharacters // inside the argument text; the returned string is a regular expression matching // the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`. func QuoteMeta(s string) string { b := make([]byte, 2*len(s)); // A byte loop is correct because all metacharacters are ASCII. j := 0; for i := 0; i < len(s); i++ { if special(int(s[i])) { b[j] = '\\'; j++; } b[j] = s[i]; j++; } return string(b[0:j]); } // Find matches in slice b if b is non-nil, otherwise find matches in string s. func (re *Regexp) allMatches(s string, b []byte, n int, deliver func(int, int)) { var end int; if b == nil { end = len(s) } else { end = len(b) } for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; { matches := re.doExecute(s, b, pos); if len(matches) == 0 { break } accept := true; if matches[1] == pos { // We've found an empty match. if matches[0] == prevMatchEnd { // We don't allow an empty match right // after a previous match, so ignore it. accept = false } var width int; if b == nil { _, width = utf8.DecodeRuneInString(s[pos:end]) } else { _, width = utf8.DecodeRune(b[pos:end]) } if width > 0 { pos += width } else { pos = end + 1 } } else { pos = matches[1] } prevMatchEnd = matches[1]; if accept { deliver(matches[0], matches[1]); i++; } } } // AllMatches slices the byte slice b into substrings that are successive // matches of the Regexp within b. If n > 0, the function returns at most n // matches. Text that does not match the expression will be skipped. Empty // matches abutting a preceding match are ignored. The function returns a slice // containing the matching substrings. func (re *Regexp) AllMatches(b []byte, n int) [][]byte { if n <= 0 { n = len(b) + 1 } result := make([][]byte, n); i := 0; re.allMatches("", b, n, func(start, end int) { result[i] = b[start:end]; i++; }); return result[0:i]; } // AllMatchesString slices the string s into substrings that are successive // matches of the Regexp within s. If n > 0, the function returns at most n // matches. Text that does not match the expression will be skipped. Empty // matches abutting a preceding match are ignored. The function returns a slice // containing the matching substrings. func (re *Regexp) AllMatchesString(s string, n int) []string { if n <= 0 { n = len(s) + 1 } result := make([]string, n); i := 0; re.allMatches(s, nil, n, func(start, end int) { result[i] = s[start:end]; i++; }); return result[0:i]; } // AllMatchesIter slices the byte slice b into substrings that are successive // matches of the Regexp within b. If n > 0, the function returns at most n // matches. Text that does not match the expression will be skipped. Empty // matches abutting a preceding match are ignored. The function returns a // channel that iterates over the matching substrings. func (re *Regexp) AllMatchesIter(b []byte, n int) <-chan []byte { if n <= 0 { n = len(b) + 1 } c := make(chan []byte, 10); go func() { re.allMatches("", b, n, func(start, end int) { c <- b[start:end] }); close(c); }(); return c; } // AllMatchesStringIter slices the string s into substrings that are successive // matches of the Regexp within s. If n > 0, the function returns at most n // matches. Text that does not match the expression will be skipped. Empty // matches abutting a preceding match are ignored. The function returns a // channel that iterates over the matching substrings. func (re *Regexp) AllMatchesStringIter(s string, n int) <-chan string { if n <= 0 { n = len(s) + 1 } c := make(chan string, 10); go func() { re.allMatches(s, nil, n, func(start, end int) { c <- s[start:end] }); close(c); }(); return c; }