----------------------------------------------------------------------------- -- | -- Module : Control.Arrow -- Copyright : (c) Ross Paterson 2002 -- License : BSD-style (see the LICENSE file in the distribution) -- -- Maintainer : ross@soi.city.ac.uk -- Stability : experimental -- Portability : portable -- -- Basic arrow definitions, based on -- /Generalising Monads to Arrows/, by John Hughes, -- /Science of Computer Programming/ 37, pp67-111, May 2000. -- plus a couple of definitions ('returnA' and 'loop') from -- /A New Notation for Arrows/, by Ross Paterson, in /ICFP 2001/, -- Firenze, Italy, pp229-240. -- See these papers for the equations these combinators are expected to -- satisfy. These papers and more information on arrows can be found at -- . module Control.Arrow ( -- * Arrows Arrow(..), Kleisli(..), -- ** Derived combinators returnA, (^>>), (>>^), -- ** Right-to-left variants (<<<), (<<^), (^<<), -- * Monoid operations ArrowZero(..), ArrowPlus(..), -- * Conditionals ArrowChoice(..), -- * Arrow application ArrowApply(..), ArrowMonad(..), leftApp, -- * Feedback ArrowLoop(..) ) where import Prelude import Control.Monad import Control.Monad.Fix infixr 5 <+> infixr 3 *** infixr 3 &&& infixr 2 +++ infixr 2 ||| infixr 1 >>>, ^>>, >>^ infixr 1 <<<, ^<<, <<^ -- | The basic arrow class. -- Any instance must define either 'arr' or 'pure' (which are synonyms), -- as well as '>>>' and 'first'. The other combinators have sensible -- default definitions, which may be overridden for efficiency. class Arrow a where -- | Lift a function to an arrow: you must define either this -- or 'pure'. arr :: (b -> c) -> a b c arr = pure -- | A synonym for 'arr': you must define one or other of them. pure :: (b -> c) -> a b c pure = arr -- | Left-to-right composition of arrows. (>>>) :: a b c -> a c d -> a b d -- | Send the first component of the input through the argument -- arrow, and copy the rest unchanged to the output. first :: a b c -> a (b,d) (c,d) -- | A mirror image of 'first'. -- -- The default definition may be overridden with a more efficient -- version if desired. second :: a b c -> a (d,b) (d,c) second f = arr swap >>> first f >>> arr swap where swap ~(x,y) = (y,x) -- | Split the input between the two argument arrows and combine -- their output. Note that this is in general not a functor. -- -- The default definition may be overridden with a more efficient -- version if desired. (***) :: a b c -> a b' c' -> a (b,b') (c,c') f *** g = first f >>> second g -- | Fanout: send the input to both argument arrows and combine -- their output. -- -- The default definition may be overridden with a more efficient -- version if desired. (&&&) :: a b c -> a b c' -> a b (c,c') f &&& g = arr (\b -> (b,b)) >>> f *** g {-# RULES "compose/arr" forall f g . arr f >>> arr g = arr (f >>> g) "first/arr" forall f . first (arr f) = arr (first f) "second/arr" forall f . second (arr f) = arr (second f) "product/arr" forall f g . arr f *** arr g = arr (f *** g) "fanout/arr" forall f g . arr f &&& arr g = arr (f &&& g) "compose/first" forall f g . first f >>> first g = first (f >>> g) "compose/second" forall f g . second f >>> second g = second (f >>> g) #-} -- Ordinary functions are arrows. instance Arrow (->) where arr f = f f >>> g = g . f first f = f *** id second f = id *** f -- (f *** g) ~(x,y) = (f x, g y) -- sorry, although the above defn is fully H'98, nhc98 can't parse it. (***) f g ~(x,y) = (f x, g y) -- | Kleisli arrows of a monad. newtype Kleisli m a b = Kleisli { runKleisli :: a -> m b } instance Monad m => Arrow (Kleisli m) where arr f = Kleisli (return . f) Kleisli f >>> Kleisli g = Kleisli (\b -> f b >>= g) first (Kleisli f) = Kleisli (\ ~(b,d) -> f b >>= \c -> return (c,d)) second (Kleisli f) = Kleisli (\ ~(d,b) -> f b >>= \c -> return (d,c)) -- | The identity arrow, which plays the role of 'return' in arrow notation. returnA :: Arrow a => a b b returnA = arr id -- | Precomposition with a pure function. (^>>) :: Arrow a => (b -> c) -> a c d -> a b d f ^>> a = arr f >>> a -- | Postcomposition with a pure function. (>>^) :: Arrow a => a b c -> (c -> d) -> a b d a >>^ f = a >>> arr f -- | Right-to-left composition, for a better fit with arrow notation. (<<<) :: Arrow a => a c d -> a b c -> a b d f <<< g = g >>> f -- | Precomposition with a pure function (right-to-left variant). (<<^) :: Arrow a => a c d -> (b -> c) -> a b d a <<^ f = a <<< arr f -- | Postcomposition with a pure function (right-to-left variant). (^<<) :: Arrow a => (c -> d) -> a b c -> a b d f ^<< a = arr f <<< a class Arrow a => ArrowZero a where zeroArrow :: a b c instance MonadPlus m => ArrowZero (Kleisli m) where zeroArrow = Kleisli (\x -> mzero) class ArrowZero a => ArrowPlus a where (<+>) :: a b c -> a b c -> a b c instance MonadPlus m => ArrowPlus (Kleisli m) where Kleisli f <+> Kleisli g = Kleisli (\x -> f x `mplus` g x) -- | Choice, for arrows that support it. This class underlies the -- @if@ and @case@ constructs in arrow notation. -- Any instance must define 'left'. The other combinators have sensible -- default definitions, which may be overridden for efficiency. class Arrow a => ArrowChoice a where -- | Feed marked inputs through the argument arrow, passing the -- rest through unchanged to the output. left :: a b c -> a (Either b d) (Either c d) -- | A mirror image of 'left'. -- -- The default definition may be overridden with a more efficient -- version if desired. right :: a b c -> a (Either d b) (Either d c) right f = arr mirror >>> left f >>> arr mirror where mirror (Left x) = Right x mirror (Right y) = Left y -- | Split the input between the two argument arrows, retagging -- and merging their outputs. -- Note that this is in general not a functor. -- -- The default definition may be overridden with a more efficient -- version if desired. (+++) :: a b c -> a b' c' -> a (Either b b') (Either c c') f +++ g = left f >>> right g -- | Fanin: Split the input between the two argument arrows and -- merge their outputs. -- -- The default definition may be overridden with a more efficient -- version if desired. (|||) :: a b d -> a c d -> a (Either b c) d f ||| g = f +++ g >>> arr untag where untag (Left x) = x untag (Right y) = y {-# RULES "left/arr" forall f . left (arr f) = arr (left f) "right/arr" forall f . right (arr f) = arr (right f) "sum/arr" forall f g . arr f +++ arr g = arr (f +++ g) "fanin/arr" forall f g . arr f ||| arr g = arr (f ||| g) "compose/left" forall f g . left f >>> left g = left (f >>> g) "compose/right" forall f g . right f >>> right g = right (f >>> g) #-} instance ArrowChoice (->) where left f = f +++ id right f = id +++ f f +++ g = (Left . f) ||| (Right . g) (|||) = either instance Monad m => ArrowChoice (Kleisli m) where left f = f +++ arr id right f = arr id +++ f f +++ g = (f >>> arr Left) ||| (g >>> arr Right) Kleisli f ||| Kleisli g = Kleisli (either f g) -- | Some arrows allow application of arrow inputs to other inputs. class Arrow a => ArrowApply a where app :: a (a b c, b) c instance ArrowApply (->) where app (f,x) = f x instance Monad m => ArrowApply (Kleisli m) where app = Kleisli (\(Kleisli f, x) -> f x) -- | The 'ArrowApply' class is equivalent to 'Monad': any monad gives rise -- to a 'Kleisli' arrow, and any instance of 'ArrowApply' defines a monad. newtype ArrowApply a => ArrowMonad a b = ArrowMonad (a () b) instance ArrowApply a => Monad (ArrowMonad a) where return x = ArrowMonad (arr (\z -> x)) ArrowMonad m >>= f = ArrowMonad (m >>> arr (\x -> let ArrowMonad h = f x in (h, ())) >>> app) -- | Any instance of 'ArrowApply' can be made into an instance of -- 'ArrowChoice' by defining 'left' = 'leftApp'. leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d) leftApp f = arr ((\b -> (arr (\() -> b) >>> f >>> arr Left, ())) ||| (\d -> (arr (\() -> d) >>> arr Right, ()))) >>> app -- | The 'loop' operator expresses computations in which an output value is -- fed back as input, even though the computation occurs only once. -- It underlies the @rec@ value recursion construct in arrow notation. class Arrow a => ArrowLoop a where loop :: a (b,d) (c,d) -> a b c instance ArrowLoop (->) where loop f b = let (c,d) = f (b,d) in c instance MonadFix m => ArrowLoop (Kleisli m) where loop (Kleisli f) = Kleisli (liftM fst . mfix . f') where f' x y = f (x, snd y)