----------------------------------------------------------------------------- -- | -- Module : Data.Generics.Schemes -- Copyright : (c) The University of Glasgow, CWI 2001--2003 -- License : BSD-style (see the file libraries/base/LICENSE) -- -- Maintainer : libraries@haskell.org -- Stability : experimental -- Portability : non-portable (local universal quantification) -- -- \"Scrap your boilerplate\" --- Generic programming in Haskell -- See . The present module provides -- frequently used generic traversal schemes. -- ----------------------------------------------------------------------------- module Data.Generics.Schemes ( everywhere, everywhere', everywhereBut, everywhereM, somewhere, everything, listify, something, synthesize, gsize, glength, gdepth, gcount, gnodecount, gtypecount, gfindtype ) where ------------------------------------------------------------------------------ #ifdef __HADDOCK__ import Prelude #endif import Data.Generics.Basics import Data.Generics.Aliases import Control.Monad -- | Apply a transformation everywhere in bottom-up manner everywhere :: (forall a. Data a => a -> a) -> (forall a. Data a => a -> a) -- Use gmapT to recurse into immediate subterms; -- recall: gmapT preserves the outermost constructor; -- post-process recursively transformed result via f -- everywhere f = f . gmapT (everywhere f) -- | Apply a transformation everywhere in top-down manner everywhere' :: (forall a. Data a => a -> a) -> (forall a. Data a => a -> a) -- Arguments of (.) are flipped compared to everywhere everywhere' f = gmapT (everywhere' f) . f -- | Variation on everywhere with an extra stop condition everywhereBut :: GenericQ Bool -> GenericT -> GenericT -- Guarded to let traversal cease if predicate q holds for x everywhereBut q f x | q x = x | otherwise = f (gmapT (everywhereBut q f) x) -- | Monadic variation on everywhere everywhereM :: Monad m => GenericM m -> GenericM m -- Bottom-up order is also reflected in order of do-actions everywhereM f x = do x' <- gmapM (everywhereM f) x f x' -- | Apply a monadic transformation at least somewhere somewhere :: MonadPlus m => GenericM m -> GenericM m -- We try "f" in top-down manner, but descent into "x" when we fail -- at the root of the term. The transformation fails if "f" fails -- everywhere, say succeeds nowhere. -- somewhere f x = f x `mplus` gmapMp (somewhere f) x -- | Summarise all nodes in top-down, left-to-right order everything :: (r -> r -> r) -> GenericQ r -> GenericQ r -- Apply f to x to summarise top-level node; -- use gmapQ to recurse into immediate subterms; -- use ordinary foldl to reduce list of intermediate results -- everything k f x = foldl k (f x) (gmapQ (everything k f) x) -- | Get a list of all entities that meet a predicate listify :: Typeable r => (r -> Bool) -> GenericQ [r] listify p = everything (++) ([] `mkQ` (\x -> if p x then [x] else [])) -- | Look up a subterm by means of a maybe-typed filter something :: GenericQ (Maybe u) -> GenericQ (Maybe u) -- "something" can be defined in terms of "everything" -- when a suitable "choice" operator is used for reduction -- something = everything orElse -- | Bottom-up synthesis of a data structure; -- 1st argument z is the initial element for the synthesis; -- 2nd argument o is for reduction of results from subterms; -- 3rd argument f updates the synthesised data according to the given term -- synthesize :: s -> (s -> s -> s) -> GenericQ (s -> s) -> GenericQ s synthesize z o f x = f x (foldr o z (gmapQ (synthesize z o f) x)) -- | Compute size of an arbitrary data structure gsize :: Data a => a -> Int gsize t = 1 + sum (gmapQ gsize t) -- | Count the number of immediate subterms of the given term glength :: GenericQ Int glength = length . gmapQ (const ()) -- | Determine depth of the given term gdepth :: GenericQ Int gdepth = (+) 1 . foldr max 0 . gmapQ gdepth -- | Determine the number of all suitable nodes in a given term gcount :: GenericQ Bool -> GenericQ Int gcount p = everything (+) (\x -> if p x then 1 else 0) -- | Determine the number of all nodes in a given term gnodecount :: GenericQ Int gnodecount = gcount (const True) -- | Determine the number of nodes of a given type in a given term gtypecount :: Typeable a => a -> GenericQ Int gtypecount (_::a) = gcount (False `mkQ` (\(_::a) -> True)) -- | Find (unambiguously) an immediate subterm of a given type gfindtype :: (Data x, Typeable y) => x -> Maybe y gfindtype = singleton . foldl unJust [] . gmapQ (Nothing `mkQ` Just) where unJust l (Just x) = x:l unJust l Nothing = l singleton [s] = Just s singleton _ = Nothing