\begin{code} {-# OPTIONS_GHC -fno-implicit-prelude #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.Enum -- Copyright : (c) The University of Glasgow, 1992-2002 -- License : see libraries/base/LICENSE -- -- Maintainer : cvs-ghc@haskell.org -- Stability : internal -- Portability : non-portable (GHC extensions) -- -- The 'Enum' and 'Bounded' classes. -- ----------------------------------------------------------------------------- -- #hide module GHC.Enum( Bounded(..), Enum(..), boundedEnumFrom, boundedEnumFromThen, -- Instances for Bounded and Enum: (), Char, Int ) where import GHC.Base import Data.Tuple () -- for dependencies default () -- Double isn't available yet \end{code} %********************************************************* %* * \subsection{Class declarations} %* * %********************************************************* \begin{code} -- | The 'Bounded' class is used to name the upper and lower limits of a -- type. 'Ord' is not a superclass of 'Bounded' since types that are not -- totally ordered may also have upper and lower bounds. -- -- The 'Bounded' class may be derived for any enumeration type; -- 'minBound' is the first constructor listed in the @data@ declaration -- and 'maxBound' is the last. -- 'Bounded' may also be derived for single-constructor datatypes whose -- constituent types are in 'Bounded'. class Bounded a where minBound, maxBound :: a -- | Class 'Enum' defines operations on sequentially ordered types. -- -- The @enumFrom@... methods are used in Haskell's translation of -- arithmetic sequences. -- -- Instances of 'Enum' may be derived for any enumeration type (types -- whose constructors have no fields). The nullary constructors are -- assumed to be numbered left-to-right by 'fromEnum' from @0@ through @n-1@. -- See Chapter 10 of the /Haskell Report/ for more details. -- -- For any type that is an instance of class 'Bounded' as well as 'Enum', -- the following should hold: -- -- * The calls @'succ' 'maxBound'@ and @'pred' 'minBound'@ should result in -- a runtime error. -- -- * 'fromEnum' and 'toEnum' should give a runtime error if the -- result value is not representable in the result type. -- For example, @'toEnum' 7 :: 'Bool'@ is an error. -- -- * 'enumFrom' and 'enumFromThen' should be defined with an implicit bound, -- thus: -- -- > enumFrom x = enumFromTo x maxBound -- > enumFromThen x y = enumFromThenTo x y bound -- > where -- > bound | fromEnum y >= fromEnum x = maxBound -- > | otherwise = minBound -- class Enum a where -- | the successor of a value. For numeric types, 'succ' adds 1. succ :: a -> a -- | the predecessor of a value. For numeric types, 'pred' subtracts 1. pred :: a -> a -- | Convert from an 'Int'. toEnum :: Int -> a -- | Convert to an 'Int'. -- It is implementation-dependent what 'fromEnum' returns when -- applied to a value that is too large to fit in an 'Int'. fromEnum :: a -> Int -- | Used in Haskell's translation of @[n..]@. enumFrom :: a -> [a] -- | Used in Haskell's translation of @[n,n'..]@. enumFromThen :: a -> a -> [a] -- | Used in Haskell's translation of @[n..m]@. enumFromTo :: a -> a -> [a] -- | Used in Haskell's translation of @[n,n'..m]@. enumFromThenTo :: a -> a -> a -> [a] succ = toEnum . (`plusInt` oneInt) . fromEnum pred = toEnum . (`minusInt` oneInt) . fromEnum enumFrom x = map toEnum [fromEnum x ..] enumFromThen x y = map toEnum [fromEnum x, fromEnum y ..] enumFromTo x y = map toEnum [fromEnum x .. fromEnum y] enumFromThenTo x1 x2 y = map toEnum [fromEnum x1, fromEnum x2 .. fromEnum y] -- Default methods for bounded enumerations boundedEnumFrom :: (Enum a, Bounded a) => a -> [a] boundedEnumFrom n = map toEnum [fromEnum n .. fromEnum (maxBound `asTypeOf` n)] boundedEnumFromThen :: (Enum a, Bounded a) => a -> a -> [a] boundedEnumFromThen n1 n2 | i_n2 >= i_n1 = map toEnum [i_n1, i_n2 .. fromEnum (maxBound `asTypeOf` n1)] | otherwise = map toEnum [i_n1, i_n2 .. fromEnum (minBound `asTypeOf` n1)] where i_n1 = fromEnum n1 i_n2 = fromEnum n2 \end{code} %********************************************************* %* * \subsection{Tuples} %* * %********************************************************* \begin{code} instance Bounded () where minBound = () maxBound = () instance Enum () where succ _ = error "Prelude.Enum.().succ: bad argument" pred _ = error "Prelude.Enum.().pred: bad argument" toEnum x | x == zeroInt = () | otherwise = error "Prelude.Enum.().toEnum: bad argument" fromEnum () = zeroInt enumFrom () = [()] enumFromThen () () = let many = ():many in many enumFromTo () () = [()] enumFromThenTo () () () = let many = ():many in many \end{code} \begin{code} -- Report requires instances up to 15 instance (Bounded a, Bounded b) => Bounded (a,b) where minBound = (minBound, minBound) maxBound = (maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c) => Bounded (a,b,c) where minBound = (minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a,b,c,d) where minBound = (minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a,b,c,d,e) where minBound = (minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a,b,c,d,e,f) where minBound = (minBound, minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a,b,c,d,e,f,g) where minBound = (minBound, minBound, minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a,b,c,d,e,f,g,h) where minBound = (minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a,b,c,d,e,f,g,h,i) where minBound = (minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a,b,c,d,e,f,g,h,i,j) where minBound = (minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a,b,c,d,e,f,g,h,i,j,k) where minBound = (minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a,b,c,d,e,f,g,h,i,j,k,l) where minBound = (minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a,b,c,d,e,f,g,h,i,j,k,l,m) where minBound = (minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a,b,c,d,e,f,g,h,i,j,k,l,m,n) where minBound = (minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound) instance (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o) where minBound = (minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound, minBound) maxBound = (maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound, maxBound) \end{code} %********************************************************* %* * \subsection{Type @Bool@} %* * %********************************************************* \begin{code} instance Bounded Bool where minBound = False maxBound = True instance Enum Bool where succ False = True succ True = error "Prelude.Enum.Bool.succ: bad argument" pred True = False pred False = error "Prelude.Enum.Bool.pred: bad argument" toEnum n | n == zeroInt = False | n == oneInt = True | otherwise = error "Prelude.Enum.Bool.toEnum: bad argument" fromEnum False = zeroInt fromEnum True = oneInt -- Use defaults for the rest enumFrom = boundedEnumFrom enumFromThen = boundedEnumFromThen \end{code} %********************************************************* %* * \subsection{Type @Ordering@} %* * %********************************************************* \begin{code} instance Bounded Ordering where minBound = LT maxBound = GT instance Enum Ordering where succ LT = EQ succ EQ = GT succ GT = error "Prelude.Enum.Ordering.succ: bad argument" pred GT = EQ pred EQ = LT pred LT = error "Prelude.Enum.Ordering.pred: bad argument" toEnum n | n == zeroInt = LT | n == oneInt = EQ | n == twoInt = GT toEnum _ = error "Prelude.Enum.Ordering.toEnum: bad argument" fromEnum LT = zeroInt fromEnum EQ = oneInt fromEnum GT = twoInt -- Use defaults for the rest enumFrom = boundedEnumFrom enumFromThen = boundedEnumFromThen \end{code} %********************************************************* %* * \subsection{Type @Char@} %* * %********************************************************* \begin{code} instance Bounded Char where minBound = '\0' maxBound = '\x10FFFF' instance Enum Char where succ (C# c#) | not (ord# c# ==# 0x10FFFF#) = C# (chr# (ord# c# +# 1#)) | otherwise = error ("Prelude.Enum.Char.succ: bad argument") pred (C# c#) | not (ord# c# ==# 0#) = C# (chr# (ord# c# -# 1#)) | otherwise = error ("Prelude.Enum.Char.pred: bad argument") toEnum = chr fromEnum = ord {-# INLINE enumFrom #-} enumFrom (C# x) = eftChar (ord# x) 0x10FFFF# -- Blarg: technically I guess enumFrom isn't strict! {-# INLINE enumFromTo #-} enumFromTo (C# x) (C# y) = eftChar (ord# x) (ord# y) {-# INLINE enumFromThen #-} enumFromThen (C# x1) (C# x2) = efdChar (ord# x1) (ord# x2) {-# INLINE enumFromThenTo #-} enumFromThenTo (C# x1) (C# x2) (C# y) = efdtChar (ord# x1) (ord# x2) (ord# y) {-# RULES "eftChar" [~1] forall x y. eftChar x y = build (\c n -> eftCharFB c n x y) "efdChar" [~1] forall x1 x2. efdChar x1 x2 = build (\ c n -> efdCharFB c n x1 x2) "efdtChar" [~1] forall x1 x2 l. efdtChar x1 x2 l = build (\ c n -> efdtCharFB c n x1 x2 l) "eftCharList" [1] eftCharFB (:) [] = eftChar "efdCharList" [1] efdCharFB (:) [] = efdChar "efdtCharList" [1] efdtCharFB (:) [] = efdtChar #-} -- We can do better than for Ints because we don't -- have hassles about arithmetic overflow at maxBound {-# INLINE [0] eftCharFB #-} eftCharFB c n x y = go x where go x | x ># y = n | otherwise = C# (chr# x) `c` go (x +# 1#) eftChar x y | x ># y = [] | otherwise = C# (chr# x) : eftChar (x +# 1#) y -- For enumFromThenTo we give up on inlining {-# NOINLINE [0] efdCharFB #-} efdCharFB c n x1 x2 | delta >=# 0# = go_up_char_fb c n x1 delta 0x10FFFF# | otherwise = go_dn_char_fb c n x1 delta 0# where delta = x2 -# x1 efdChar x1 x2 | delta >=# 0# = go_up_char_list x1 delta 0x10FFFF# | otherwise = go_dn_char_list x1 delta 0# where delta = x2 -# x1 {-# NOINLINE [0] efdtCharFB #-} efdtCharFB c n x1 x2 lim | delta >=# 0# = go_up_char_fb c n x1 delta lim | otherwise = go_dn_char_fb c n x1 delta lim where delta = x2 -# x1 efdtChar x1 x2 lim | delta >=# 0# = go_up_char_list x1 delta lim | otherwise = go_dn_char_list x1 delta lim where delta = x2 -# x1 go_up_char_fb c n x delta lim = go_up x where go_up x | x ># lim = n | otherwise = C# (chr# x) `c` go_up (x +# delta) go_dn_char_fb c n x delta lim = go_dn x where go_dn x | x <# lim = n | otherwise = C# (chr# x) `c` go_dn (x +# delta) go_up_char_list x delta lim = go_up x where go_up x | x ># lim = [] | otherwise = C# (chr# x) : go_up (x +# delta) go_dn_char_list x delta lim = go_dn x where go_dn x | x <# lim = [] | otherwise = C# (chr# x) : go_dn (x +# delta) \end{code} %********************************************************* %* * \subsection{Type @Int@} %* * %********************************************************* Be careful about these instances. (a) remember that you have to count down as well as up e.g. [13,12..0] (b) be careful of Int overflow (c) remember that Int is bounded, so [1..] terminates at maxInt Also NB that the Num class isn't available in this module. \begin{code} instance Bounded Int where minBound = minInt maxBound = maxInt instance Enum Int where succ x | x == maxBound = error "Prelude.Enum.succ{Int}: tried to take `succ' of maxBound" | otherwise = x `plusInt` oneInt pred x | x == minBound = error "Prelude.Enum.pred{Int}: tried to take `pred' of minBound" | otherwise = x `minusInt` oneInt toEnum x = x fromEnum x = x {-# INLINE enumFrom #-} enumFrom (I# x) = eftInt x maxInt# where I# maxInt# = maxInt -- Blarg: technically I guess enumFrom isn't strict! {-# INLINE enumFromTo #-} enumFromTo (I# x) (I# y) = eftInt x y {-# INLINE enumFromThen #-} enumFromThen (I# x1) (I# x2) = efdInt x1 x2 {-# INLINE enumFromThenTo #-} enumFromThenTo (I# x1) (I# x2) (I# y) = efdtInt x1 x2 y ----------------------------------------------------- -- eftInt and eftIntFB deal with [a..b], which is the -- most common form, so we take a lot of care -- In particular, we have rules for deforestation {-# RULES "eftInt" [~1] forall x y. eftInt x y = build (\ c n -> eftIntFB c n x y) "eftIntList" [1] eftIntFB (:) [] = eftInt #-} eftInt :: Int# -> Int# -> [Int] -- [x1..x2] eftInt x y | x ># y = [] | otherwise = go x where go x = I# x : if x ==# y then [] else go (x +# 1#) {-# INLINE [0] eftIntFB #-} eftIntFB :: (Int -> r -> r) -> r -> Int# -> Int# -> r eftIntFB c n x y | x ># y = n | otherwise = go x where go x = I# x `c` if x ==# y then n else go (x +# 1#) -- Watch out for y=maxBound; hence ==, not > -- Be very careful not to have more than one "c" -- so that when eftInfFB is inlined we can inline -- whatver is bound to "c" ----------------------------------------------------- -- efdInt and efdtInt deal with [a,b..] and [a,b..c], which are much less common -- so we are less elaborate. The code is more complicated anyway, because -- of worries about Int overflow, so we don't both with rules and deforestation efdInt :: Int# -> Int# -> [Int] -- [x1,x2..maxInt] efdInt x1 x2 | x2 >=# x1 = case maxInt of I# y -> efdtIntUp x1 x2 y | otherwise = case minInt of I# y -> efdtIntDn x1 x2 y efdtInt :: Int# -> Int# -> Int# -> [Int] -- [x1,x2..y] efdtInt x1 x2 y | x2 >=# x1 = efdtIntUp x1 x2 y | otherwise = efdtIntDn x1 x2 y efdtIntUp :: Int# -> Int# -> Int# -> [Int] efdtIntUp x1 x2 y -- Be careful about overflow! | y <# x2 = if y <# x1 then [] else [I# x1] | otherwise = -- Common case: x1 < x2 <= y let delta = x2 -# x1 y' = y -# delta -- NB: x1 <= y'; hence y' is representable -- Invariant: x <= y; and x+delta won't overflow go_up x | x ># y' = [I# x] | otherwise = I# x : go_up (x +# delta) in I# x1 : go_up x2 efdtIntDn :: Int# -> Int# -> Int# -> [Int] efdtIntDn x1 x2 y -- x2 < x1 | y ># x2 = if y ># x1 then [] else [I# x1] | otherwise = -- Common case: x1 > x2 >= y let delta = x2 -# x1 y' = y -# delta -- NB: x1 <= y'; hence y' is representable -- Invariant: x >= y; and x+delta won't overflow go_dn x | x <# y' = [I# x] | otherwise = I# x : go_dn (x +# delta) in I# x1 : go_dn x2 \end{code}