{-# OPTIONS_GHC -cpp -fglasgow-exts -fno-warn-orphans #-} -- | -- Module : Data.ByteString -- Copyright : (c) The University of Glasgow 2001, -- (c) David Roundy 2003-2005, -- (c) Simon Marlow 2005 -- (c) Don Stewart 2005-2006 -- (c) Bjorn Bringert 2006 -- -- Array fusion code: -- (c) 2001,2002 Manuel M T Chakravarty & Gabriele Keller -- (c) 2006 Manuel M T Chakravarty & Roman Leshchinskiy -- -- License : BSD-style -- -- Maintainer : dons@cse.unsw.edu.au -- Stability : experimental -- Portability : portable -- -- A time and space-efficient implementation of byte vectors using -- packed Word8 arrays, suitable for high performance use, both in terms -- of large data quantities, or high speed requirements. Byte vectors -- are encoded as strict 'Word8' arrays of bytes, held in a 'ForeignPtr', -- and can be passed between C and Haskell with little effort. -- -- This module is intended to be imported @qualified@, to avoid name -- clashes with "Prelude" functions. eg. -- -- > import qualified Data.ByteString as B -- -- Original GHC implementation by Bryan O\'Sullivan. -- Rewritten to use 'Data.Array.Unboxed.UArray' by Simon Marlow. -- Rewritten to support slices and use 'ForeignPtr' by David Roundy. -- Polished and extended by Don Stewart. -- module Data.ByteString ( -- * The @ByteString@ type ByteString, -- abstract, instances: Eq, Ord, Show, Read, Data, Typeable, Monoid -- * Introducing and eliminating 'ByteString's empty, -- :: ByteString singleton, -- :: Word8 -> ByteString pack, -- :: [Word8] -> ByteString unpack, -- :: ByteString -> [Word8] -- * Basic interface cons, -- :: Word8 -> ByteString -> ByteString snoc, -- :: ByteString -> Word8 -> ByteString append, -- :: ByteString -> ByteString -> ByteString head, -- :: ByteString -> Word8 uncons, -- :: ByteString -> Maybe (Word8, ByteString) last, -- :: ByteString -> Word8 tail, -- :: ByteString -> ByteString init, -- :: ByteString -> ByteString null, -- :: ByteString -> Bool length, -- :: ByteString -> Int -- * Transforming ByteStrings map, -- :: (Word8 -> Word8) -> ByteString -> ByteString reverse, -- :: ByteString -> ByteString byteswap, -- :: ByteString -> ByteString intersperse, -- :: Word8 -> ByteString -> ByteString transpose, -- :: [ByteString] -> [ByteString] -- * Reducing 'ByteString's (folds) foldl, -- :: (a -> Word8 -> a) -> a -> ByteString -> a foldl', -- :: (a -> Word8 -> a) -> a -> ByteString -> a foldl1, -- :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8 foldl1', -- :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8 foldr, -- :: (Word8 -> a -> a) -> a -> ByteString -> a foldr', -- :: (Word8 -> a -> a) -> a -> ByteString -> a foldr1, -- :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8 foldr1', -- :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8 -- ** Special folds concat, -- :: [ByteString] -> ByteString concatMap, -- :: (Word8 -> ByteString) -> ByteString -> ByteString any, -- :: (Word8 -> Bool) -> ByteString -> Bool all, -- :: (Word8 -> Bool) -> ByteString -> Bool maximum, -- :: ByteString -> Word8 minimum, -- :: ByteString -> Word8 -- * Building ByteStrings -- ** Scans scanl, -- :: (Word8 -> Word8 -> Word8) -> Word8 -> ByteString -> ByteString scanl1, -- :: (Word8 -> Word8 -> Word8) -> ByteString -> ByteString scanr, -- :: (Word8 -> Word8 -> Word8) -> Word8 -> ByteString -> ByteString scanr1, -- :: (Word8 -> Word8 -> Word8) -> ByteString -> ByteString -- ** Accumulating maps mapAccumL, -- :: (acc -> Word8 -> (acc, Word8)) -> acc -> ByteString -> (acc, ByteString) mapAccumR, -- :: (acc -> Word8 -> (acc, Word8)) -> acc -> ByteString -> (acc, ByteString) mapIndexed, -- :: (Int -> Word8 -> Word8) -> ByteString -> ByteString -- ** Unfolding ByteStrings replicate, -- :: Int -> Word8 -> ByteString unfoldr, -- :: (a -> Maybe (Word8, a)) -> a -> ByteString unfoldrN, -- :: Int -> (a -> Maybe (Word8, a)) -> a -> (ByteString, Maybe a) -- * Substrings -- ** Breaking strings take, -- :: Int -> ByteString -> ByteString drop, -- :: Int -> ByteString -> ByteString splitAt, -- :: Int -> ByteString -> (ByteString, ByteString) takeWhile, -- :: (Word8 -> Bool) -> ByteString -> ByteString dropWhile, -- :: (Word8 -> Bool) -> ByteString -> ByteString span, -- :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString) spanEnd, -- :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString) break, -- :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString) breakEnd, -- :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString) group, -- :: ByteString -> [ByteString] groupBy, -- :: (Word8 -> Word8 -> Bool) -> ByteString -> [ByteString] inits, -- :: ByteString -> [ByteString] tails, -- :: ByteString -> [ByteString] -- ** Breaking into many substrings split, -- :: Word8 -> ByteString -> [ByteString] splitWith, -- :: (Word8 -> Bool) -> ByteString -> [ByteString] -- ** Joining strings join, -- :: ByteString -> [ByteString] -> ByteString -- * Predicates isPrefixOf, -- :: ByteString -> ByteString -> Bool isSuffixOf, -- :: ByteString -> ByteString -> Bool -- ** Search for arbitrary substrings isSubstringOf, -- :: ByteString -> ByteString -> Bool findSubstring, -- :: ByteString -> ByteString -> Maybe Int findSubstrings, -- :: ByteString -> ByteString -> [Int] -- * Searching ByteStrings -- ** Searching by equality -- | These functions use memchr(3) to efficiently search the ByteString elem, -- :: Word8 -> ByteString -> Bool notElem, -- :: Word8 -> ByteString -> Bool -- ** Searching with a predicate find, -- :: (Word8 -> Bool) -> ByteString -> Maybe Word8 filter, -- :: (Word8 -> Bool) -> ByteString -> ByteString -- partition -- :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString) -- * Indexing ByteStrings index, -- :: ByteString -> Int -> Word8 elemIndex, -- :: Word8 -> ByteString -> Maybe Int elemIndices, -- :: Word8 -> ByteString -> [Int] elemIndexEnd, -- :: Word8 -> ByteString -> Maybe Int findIndex, -- :: (Word8 -> Bool) -> ByteString -> Maybe Int findIndices, -- :: (Word8 -> Bool) -> ByteString -> [Int] count, -- :: Word8 -> ByteString -> Int -- * Zipping and unzipping ByteStrings zip, -- :: ByteString -> ByteString -> [(Word8,Word8)] zipWith, -- :: (Word8 -> Word8 -> c) -> ByteString -> ByteString -> [c] unzip, -- :: [(Word8,Word8)] -> (ByteString,ByteString) -- * Ordered ByteStrings sort, -- :: ByteString -> ByteString -- * Low level CString conversions -- ** Copying ByteStrings -- | This function performs a memcpy(3) operations copy, -- :: ByteString -> ByteString -- ** Packing CStrings and pointers -- | These functions perform memcpy(3) operations packCString, -- :: CString -> IO ByteString packCStringLen, -- :: CStringLen -> IO ByteString -- ** Using ByteStrings as CStrings useAsCString, -- :: ByteString -> (CString -> IO a) -> IO a useAsCStringLen, -- :: ByteString -> (CStringLen -> IO a) -> IO a -- * I\/O with 'ByteString's -- ** Standard input and output getLine, -- :: IO ByteString getContents, -- :: IO ByteString putStr, -- :: ByteString -> IO () putStrLn, -- :: ByteString -> IO () interact, -- :: (ByteString -> ByteString) -> IO () -- ** Files readFile, -- :: FilePath -> IO ByteString writeFile, -- :: FilePath -> ByteString -> IO () appendFile, -- :: FilePath -> ByteString -> IO () -- mmapFile, -- :: FilePath -> IO ByteString -- ** I\/O with Handles hGetLine, -- :: Handle -> IO ByteString hGetContents, -- :: Handle -> IO ByteString hGet, -- :: Handle -> Int -> IO ByteString hGetNonBlocking, -- :: Handle -> Int -> IO ByteString hPut, -- :: Handle -> ByteString -> IO () hPutStr, -- :: Handle -> ByteString -> IO () hPutStrLn, -- :: Handle -> ByteString -> IO () #if defined(__GLASGOW_HASKELL__) -- * Fusion utilities unpackList, -- eek, otherwise it gets thrown away by the simplifier lengthU, maximumU, minimumU #endif ) where import qualified Prelude as P import Prelude hiding (reverse,head,tail,last,init,null ,length,map,lines,foldl,foldr,unlines ,concat,any,take,drop,splitAt,takeWhile ,dropWhile,span,break,elem,filter,maximum ,minimum,all,concatMap,foldl1,foldr1 ,scanl,scanl1,scanr,scanr1 ,readFile,writeFile,appendFile,replicate ,getContents,getLine,putStr,putStrLn,interact ,zip,zipWith,unzip,notElem) import Data.ByteString.Base import Data.ByteString.Fusion import qualified Data.List as List import Data.Word (Word8) import Data.Maybe (listToMaybe) import Data.Array (listArray) import qualified Data.Array as Array ((!)) -- Control.Exception.bracket not available in yhc or nhc #ifndef __NHC__ import Control.Exception (bracket, assert) import qualified Control.Exception as Exception #else import IO (bracket) #endif import Control.Monad (when) import Foreign.C.String (CString, CStringLen) import Foreign.C.Types (CSize) import Foreign.ForeignPtr import Foreign.Marshal.Array import Foreign.Ptr import Foreign.Storable (Storable(..)) -- hGetBuf and hPutBuf not available in yhc or nhc import System.IO (stdin,stdout,hClose,hFileSize ,hGetBuf,hPutBuf,openBinaryFile ,Handle,IOMode(..)) import Data.Monoid (Monoid, mempty, mappend, mconcat) #if !defined(__GLASGOW_HASKELL__) import System.IO.Unsafe import qualified System.Environment import qualified System.IO (hGetLine) #endif #if defined(__GLASGOW_HASKELL__) import System.IO (hGetBufNonBlocking) import System.IO.Error (isEOFError) import GHC.Handle import GHC.Prim (Word#, (+#), writeWord8OffAddr#) import GHC.Base (build) import GHC.Word hiding (Word8) import GHC.Ptr (Ptr(..)) import GHC.ST (ST(..)) import GHC.IOBase #endif -- An alternative to Control.Exception (assert) for nhc98 #ifdef __NHC__ #define assert assertS "__FILE__ : __LINE__" assertS :: String -> Bool -> a -> a assertS _ True = id assertS s False = error ("assertion failed at "++s) #endif -- ----------------------------------------------------------------------------- -- -- Useful macros, until we have bang patterns -- #define STRICT1(f) f a | a `seq` False = undefined #define STRICT2(f) f a b | a `seq` b `seq` False = undefined #define STRICT3(f) f a b c | a `seq` b `seq` c `seq` False = undefined #define STRICT4(f) f a b c d | a `seq` b `seq` c `seq` d `seq` False = undefined #define STRICT5(f) f a b c d e | a `seq` b `seq` c `seq` d `seq` e `seq` False = undefined -- ----------------------------------------------------------------------------- instance Eq ByteString where (==) = eq instance Ord ByteString where compare = compareBytes instance Monoid ByteString where mempty = empty mappend = append mconcat = concat {- instance Arbitrary PackedString where arbitrary = P.pack `fmap` arbitrary coarbitrary s = coarbitrary (P.unpack s) -} -- | /O(n)/ Equality on the 'ByteString' type. eq :: ByteString -> ByteString -> Bool eq a@(PS p s l) b@(PS p' s' l') | l /= l' = False -- short cut on length | p == p' && s == s' = True -- short cut for the same string | otherwise = compareBytes a b == EQ {-# INLINE eq #-} -- | /O(n)/ 'compareBytes' provides an 'Ordering' for 'ByteStrings' supporting slices. compareBytes :: ByteString -> ByteString -> Ordering compareBytes (PS x1 s1 l1) (PS x2 s2 l2) | l1 == 0 && l2 == 0 = EQ -- short cut for empty strings | x1 == x2 && s1 == s2 && l1 == l2 = EQ -- short cut for the same string | otherwise = inlinePerformIO $ withForeignPtr x1 $ \p1 -> withForeignPtr x2 $ \p2 -> do i <- memcmp (p1 `plusPtr` s1) (p2 `plusPtr` s2) (fromIntegral $ min l1 l2) return $! case i `compare` 0 of EQ -> l1 `compare` l2 x -> x {-# INLINE compareBytes #-} {- -- -- About 4x slower over 32M -- compareBytes :: ByteString -> ByteString -> Ordering compareBytes (PS fp1 off1 len1) (PS fp2 off2 len2) = inlinePerformIO $ withForeignPtr fp1 $ \p1 -> withForeignPtr fp2 $ \p2 -> cmp (p1 `plusPtr` off1) (p2 `plusPtr` off2) 0 len1 len2 cmp :: Ptr Word8 -> Ptr Word8 -> Int -> Int -> Int-> IO Ordering STRICT5(cmp) cmp p1 p2 n len1 len2 | n == len1 = if n == len2 then return EQ else return LT | n == len2 = return GT | otherwise = do (a :: Word8) <- peekByteOff p1 n (b :: Word8) <- peekByteOff p2 n case a `compare` b of EQ -> cmp p1 p2 (n+1) len1 len2 LT -> return LT GT -> return GT {-# INLINE compareBytes #-} -} -- ----------------------------------------------------------------------------- -- Introducing and eliminating 'ByteString's -- | /O(1)/ Convert a 'Word8' into a 'ByteString' singleton :: Word8 -> ByteString singleton c = unsafeCreate 1 $ \p -> poke p c {-# INLINE [1] singleton #-} -- -- XXX The unsafePerformIO is critical! -- -- Otherwise: -- -- singleton 255 `compare` singleton 127 -- -- is compiled to: -- -- case mallocByteString 2 of -- ForeignPtr f internals -> -- case writeWord8OffAddr# f 0 255 of _ -> -- case writeWord8OffAddr# f 0 127 of _ -> -- case eqAddr# f f of -- False -> case compare (GHC.Prim.plusAddr# f 0) -- (GHC.Prim.plusAddr# f 0) -- -- -- | /O(n)/ Convert a '[Word8]' into a 'ByteString'. -- -- For applications with large numbers of string literals, pack can be a -- bottleneck. In such cases, consider using packAddress (GHC only). pack :: [Word8] -> ByteString #if !defined(__GLASGOW_HASKELL__) pack str = unsafeCreate (P.length str) $ \p -> go p str where go _ [] = return () go p (x:xs) = poke p x >> go (p `plusPtr` 1) xs -- less space than pokeElemOff #else /* hack away */ pack str = unsafeCreate (P.length str) $ \(Ptr p) -> stToIO (go p 0# str) where go _ _ [] = return () go p i (W8# c:cs) = writeByte p i c >> go p (i +# 1#) cs writeByte p i c = ST $ \s# -> case writeWord8OffAddr# p i c s# of s2# -> (# s2#, () #) #endif -- | /O(n)/ Converts a 'ByteString' to a '[Word8]'. unpack :: ByteString -> [Word8] #if !defined(__GLASGOW_HASKELL__) unpack (PS _ _ 0) = [] unpack (PS ps s l) = inlinePerformIO $ withForeignPtr ps $ \p -> go (p `plusPtr` s) (l - 1) [] where STRICT3(go) go p 0 acc = peek p >>= \e -> return (e : acc) go p n acc = peekByteOff p n >>= \e -> go p (n-1) (e : acc) {-# INLINE unpack #-} #else unpack ps = build (unpackFoldr ps) {-# INLINE unpack #-} -- -- critical this isn't strict in the acc -- as it will break in the presence of list fusion. this is a known -- issue with seq and build/foldr rewrite rules, which rely on lazy -- demanding to avoid bottoms in the list. -- unpackFoldr :: ByteString -> (Word8 -> a -> a) -> a -> a unpackFoldr (PS fp off len) f ch = withPtr fp $ \p -> do let loop q n _ | q `seq` n `seq` False = undefined -- n.b. loop _ (-1) acc = return acc loop q n acc = do a <- peekByteOff q n loop q (n-1) (a `f` acc) loop (p `plusPtr` off) (len-1) ch {-# INLINE [0] unpackFoldr #-} unpackList :: ByteString -> [Word8] unpackList (PS fp off len) = withPtr fp $ \p -> do let STRICT3(loop) loop _ (-1) acc = return acc loop q n acc = do a <- peekByteOff q n loop q (n-1) (a : acc) loop (p `plusPtr` off) (len-1) [] {-# RULES "FPS unpack-list" [1] forall p . unpackFoldr p (:) [] = unpackList p #-} #endif -- --------------------------------------------------------------------- -- Basic interface -- | /O(1)/ Test whether a ByteString is empty. null :: ByteString -> Bool null (PS _ _ l) = assert (l >= 0) $ l <= 0 {-# INLINE null #-} -- --------------------------------------------------------------------- -- | /O(1)/ 'length' returns the length of a ByteString as an 'Int'. length :: ByteString -> Int length (PS _ _ l) = assert (l >= 0) $ l -- -- length/loop fusion. When taking the length of any fuseable loop, -- rewrite it as a foldl', and thus avoid allocating the result buffer -- worth around 10% in speed testing. -- #if defined(__GLASGOW_HASKELL__) {-# INLINE [1] length #-} #endif lengthU :: ByteString -> Int lengthU = foldl' (const . (+1)) (0::Int) {-# INLINE lengthU #-} {-# RULES -- v2 fusion "FPS length/loop" forall loop s . length (loopArr (loopWrapper loop s)) = lengthU (loopArr (loopWrapper loop s)) #-} ------------------------------------------------------------------------ -- | /O(n)/ 'cons' is analogous to (:) for lists, but of different -- complexity, as it requires a memcpy. cons :: Word8 -> ByteString -> ByteString cons c (PS x s l) = unsafeCreate (l+1) $ \p -> withForeignPtr x $ \f -> do poke p c memcpy (p `plusPtr` 1) (f `plusPtr` s) (fromIntegral l) {-# INLINE cons #-} -- | /O(n)/ Append a byte to the end of a 'ByteString' snoc :: ByteString -> Word8 -> ByteString snoc (PS x s l) c = unsafeCreate (l+1) $ \p -> withForeignPtr x $ \f -> do memcpy p (f `plusPtr` s) (fromIntegral l) poke (p `plusPtr` l) c {-# INLINE snoc #-} -- todo fuse -- | /O(1)/ Extract the first element of a ByteString, which must be non-empty. -- An exception will be thrown in the case of an empty ByteString. head :: ByteString -> Word8 head (PS x s l) | l <= 0 = errorEmptyList "head" | otherwise = inlinePerformIO $ withForeignPtr x $ \p -> peekByteOff p s {-# INLINE head #-} -- | /O(1)/ Extract the elements after the head of a ByteString, which must be non-empty. -- An exception will be thrown in the case of an empty ByteString. tail :: ByteString -> ByteString tail (PS p s l) | l <= 0 = errorEmptyList "tail" | otherwise = PS p (s+1) (l-1) {-# INLINE tail #-} -- | /O(1)/ Extract the head and tail of a ByteString, returning Nothing -- if it is empty. uncons :: ByteString -> Maybe (Word8, ByteString) uncons (PS x s l) | l <= 0 = Nothing | otherwise = Just (inlinePerformIO $ withForeignPtr x $ \p -> peekByteOff p s, PS x (s+1) (l-1)) {-# INLINE uncons #-} -- | /O(1)/ Extract the last element of a ByteString, which must be finite and non-empty. -- An exception will be thrown in the case of an empty ByteString. last :: ByteString -> Word8 last ps@(PS x s l) | null ps = errorEmptyList "last" | otherwise = inlinePerformIO $ withForeignPtr x $ \p -> peekByteOff p (s+l-1) {-# INLINE last #-} -- | /O(1)/ Return all the elements of a 'ByteString' except the last one. -- An exception will be thrown in the case of an empty ByteString. init :: ByteString -> ByteString init ps@(PS p s l) | null ps = errorEmptyList "init" | otherwise = PS p s (l-1) {-# INLINE init #-} -- | /O(n)/ Append two ByteStrings append :: ByteString -> ByteString -> ByteString append xs ys | null xs = ys | null ys = xs | otherwise = concat [xs,ys] {-# INLINE append #-} -- --------------------------------------------------------------------- -- Transformations -- | /O(n)/ 'map' @f xs@ is the ByteString obtained by applying @f@ to each -- element of @xs@. This function is subject to array fusion. map :: (Word8 -> Word8) -> ByteString -> ByteString #if defined(LOOPU_FUSION) map f = loopArr . loopU (mapEFL f) NoAcc #elif defined(LOOPUP_FUSION) map f = loopArr . loopUp (mapEFL f) NoAcc #elif defined(LOOPNOACC_FUSION) map f = loopArr . loopNoAcc (mapEFL f) #else map f = loopArr . loopMap f #endif {-# INLINE map #-} {- -- | /O(n)/ Like 'map', but not fuseable. The benefit is that it is -- slightly faster for one-shot cases. map' :: (Word8 -> Word8) -> ByteString -> ByteString map' f (PS fp s len) = inlinePerformIO $ withForeignPtr fp $ \a -> create len $ map_ 0 (a `plusPtr` s) where map_ :: Int -> Ptr Word8 -> Ptr Word8 -> IO () STRICT3(map_) map_ n p1 p2 | n >= len = return () | otherwise = do x <- peekByteOff p1 n pokeByteOff p2 n (f x) map_ (n+1) p1 p2 {-# INLINE map' #-} -} -- | /O(n)/ 'reverse' @xs@ efficiently returns the elements of @xs@ in reverse order. reverse :: ByteString -> ByteString reverse (PS x s l) = unsafeCreate l $ \p -> withForeignPtr x $ \f -> c_reverse p (f `plusPtr` s) (fromIntegral l) -- | /O(n)/ 'byteswap' @xs@ efficiently swaps the four-byte endianness throughout @xs@. (Assumes length @xs@ is a multiple of 4.) byteswap :: ByteString -> ByteString byteswap (PS x s l) = unsafeCreate l $ \p -> withForeignPtr x $ \f -> c_byteswap p (f `plusPtr` s) (fromIntegral l) -- todo, fuseable version -- | /O(n)/ The 'intersperse' function takes a 'Word8' and a -- 'ByteString' and \`intersperses\' that byte between the elements of -- the 'ByteString'. It is analogous to the intersperse function on -- Lists. intersperse :: Word8 -> ByteString -> ByteString intersperse c ps@(PS x s l) | length ps < 2 = ps | otherwise = unsafeCreate (2*l-1) $ \p -> withForeignPtr x $ \f -> c_intersperse p (f `plusPtr` s) (fromIntegral l) c {- intersperse c = pack . List.intersperse c . unpack -} -- | The 'transpose' function transposes the rows and columns of its -- 'ByteString' argument. transpose :: [ByteString] -> [ByteString] transpose ps = P.map pack (List.transpose (P.map unpack ps)) -- --------------------------------------------------------------------- -- Reducing 'ByteString's -- | 'foldl', applied to a binary operator, a starting value (typically -- the left-identity of the operator), and a ByteString, reduces the -- ByteString using the binary operator, from left to right. -- This function is subject to array fusion. foldl :: (a -> Word8 -> a) -> a -> ByteString -> a #if !defined(LOOPU_FUSION) foldl f z = loopAcc . loopUp (foldEFL f) z #else foldl f z = loopAcc . loopU (foldEFL f) z #endif {-# INLINE foldl #-} {- -- -- About twice as fast with 6.4.1, but not fuseable -- A simple fold . map is enough to make it worth while. -- foldl f v (PS x s l) = inlinePerformIO $ withForeignPtr x $ \ptr -> lgo v (ptr `plusPtr` s) (ptr `plusPtr` (s+l)) where STRICT3(lgo) lgo z p q | p == q = return z | otherwise = do c <- peek p lgo (f z c) (p `plusPtr` 1) q -} -- | 'foldl\'' is like 'foldl', but strict in the accumulator. -- Though actually foldl is also strict in the accumulator. foldl' :: (a -> Word8 -> a) -> a -> ByteString -> a foldl' = foldl -- foldl' f z = loopAcc . loopU (foldEFL' f) z {-# INLINE foldl' #-} -- | 'foldr', applied to a binary operator, a starting value -- (typically the right-identity of the operator), and a ByteString, -- reduces the ByteString using the binary operator, from right to left. foldr :: (Word8 -> a -> a) -> a -> ByteString -> a foldr k z = loopAcc . loopDown (foldEFL (flip k)) z {-# INLINE foldr #-} -- | 'foldr\'' is like 'foldr', but strict in the accumulator. foldr' :: (Word8 -> a -> a) -> a -> ByteString -> a foldr' k v (PS x s l) = inlinePerformIO $ withForeignPtr x $ \ptr -> go v (ptr `plusPtr` (s+l-1)) (ptr `plusPtr` (s-1)) where STRICT3(go) go z p q | p == q = return z | otherwise = do c <- peek p go (c `k` z) (p `plusPtr` (-1)) q -- tail recursive {-# INLINE [1] foldr' #-} -- | 'foldl1' is a variant of 'foldl' that has no starting value -- argument, and thus must be applied to non-empty 'ByteStrings'. -- This function is subject to array fusion. -- An exception will be thrown in the case of an empty ByteString. foldl1 :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8 foldl1 f ps | null ps = errorEmptyList "foldl1" | otherwise = foldl f (unsafeHead ps) (unsafeTail ps) {-# INLINE foldl1 #-} -- | 'foldl1\'' is like 'foldl1', but strict in the accumulator. -- An exception will be thrown in the case of an empty ByteString. foldl1' :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8 foldl1' f ps | null ps = errorEmptyList "foldl1'" | otherwise = foldl' f (unsafeHead ps) (unsafeTail ps) {-# INLINE foldl1' #-} -- | 'foldr1' is a variant of 'foldr' that has no starting value argument, -- and thus must be applied to non-empty 'ByteString's -- An exception will be thrown in the case of an empty ByteString. foldr1 :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8 foldr1 f ps | null ps = errorEmptyList "foldr1" | otherwise = foldr f (last ps) (init ps) {-# INLINE foldr1 #-} -- | 'foldr1\'' is a variant of 'foldr1', but is strict in the -- accumulator. foldr1' :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8 foldr1' f ps | null ps = errorEmptyList "foldr1" | otherwise = foldr' f (last ps) (init ps) {-# INLINE [1] foldr1' #-} -- --------------------------------------------------------------------- -- Special folds -- | /O(n)/ Concatenate a list of ByteStrings. concat :: [ByteString] -> ByteString concat [] = empty concat [ps] = ps concat xs = unsafeCreate len $ \ptr -> go xs ptr where len = P.sum . P.map length $ xs STRICT2(go) go [] _ = return () go (PS p s l:ps) ptr = do withForeignPtr p $ \fp -> memcpy ptr (fp `plusPtr` s) (fromIntegral l) go ps (ptr `plusPtr` l) -- | Map a function over a 'ByteString' and concatenate the results concatMap :: (Word8 -> ByteString) -> ByteString -> ByteString concatMap f = concat . foldr ((:) . f) [] -- foldr (append . f) empty -- | /O(n)/ Applied to a predicate and a ByteString, 'any' determines if -- any element of the 'ByteString' satisfies the predicate. any :: (Word8 -> Bool) -> ByteString -> Bool any _ (PS _ _ 0) = False any f (PS x s l) = inlinePerformIO $ withForeignPtr x $ \ptr -> go (ptr `plusPtr` s) (ptr `plusPtr` (s+l)) where STRICT2(go) go p q | p == q = return False | otherwise = do c <- peek p if f c then return True else go (p `plusPtr` 1) q -- todo fuse -- | /O(n)/ Applied to a predicate and a 'ByteString', 'all' determines -- if all elements of the 'ByteString' satisfy the predicate. all :: (Word8 -> Bool) -> ByteString -> Bool all _ (PS _ _ 0) = True all f (PS x s l) = inlinePerformIO $ withForeignPtr x $ \ptr -> go (ptr `plusPtr` s) (ptr `plusPtr` (s+l)) where STRICT2(go) go p q | p == q = return True -- end of list | otherwise = do c <- peek p if f c then go (p `plusPtr` 1) q else return False ------------------------------------------------------------------------ -- | /O(n)/ 'maximum' returns the maximum value from a 'ByteString' -- This function will fuse. -- An exception will be thrown in the case of an empty ByteString. maximum :: ByteString -> Word8 maximum xs@(PS x s l) | null xs = errorEmptyList "maximum" | otherwise = inlinePerformIO $ withForeignPtr x $ \p -> c_maximum (p `plusPtr` s) (fromIntegral l) -- | /O(n)/ 'minimum' returns the minimum value from a 'ByteString' -- This function will fuse. -- An exception will be thrown in the case of an empty ByteString. minimum :: ByteString -> Word8 minimum xs@(PS x s l) | null xs = errorEmptyList "minimum" | otherwise = inlinePerformIO $ withForeignPtr x $ \p -> c_minimum (p `plusPtr` s) (fromIntegral l) -- -- minimum/maximum/loop fusion. As for length (and other folds), when we -- see we're applied after a fuseable op, switch from using the C -- version, to the fuseable version. The result should then avoid -- allocating a buffer. -- #if defined(__GLASGOW_HASKELL__) {-# INLINE [1] minimum #-} {-# INLINE [1] maximum #-} #endif maximumU :: ByteString -> Word8 maximumU = foldl1' max {-# INLINE maximumU #-} minimumU :: ByteString -> Word8 minimumU = foldl1' min {-# INLINE minimumU #-} {-# RULES "FPS minimum/loop" forall loop s . minimum (loopArr (loopWrapper loop s)) = minimumU (loopArr (loopWrapper loop s)) "FPS maximum/loop" forall loop s . maximum (loopArr (loopWrapper loop s)) = maximumU (loopArr (loopWrapper loop s)) #-} ------------------------------------------------------------------------ -- | The 'mapAccumL' function behaves like a combination of 'map' and -- 'foldl'; it applies a function to each element of a ByteString, -- passing an accumulating parameter from left to right, and returning a -- final value of this accumulator together with the new list. mapAccumL :: (acc -> Word8 -> (acc, Word8)) -> acc -> ByteString -> (acc, ByteString) #if !defined(LOOPU_FUSION) mapAccumL f z = unSP . loopUp (mapAccumEFL f) z #else mapAccumL f z = unSP . loopU (mapAccumEFL f) z #endif {-# INLINE mapAccumL #-} -- | The 'mapAccumR' function behaves like a combination of 'map' and -- 'foldr'; it applies a function to each element of a ByteString, -- passing an accumulating parameter from right to left, and returning a -- final value of this accumulator together with the new ByteString. mapAccumR :: (acc -> Word8 -> (acc, Word8)) -> acc -> ByteString -> (acc, ByteString) mapAccumR f z = unSP . loopDown (mapAccumEFL f) z {-# INLINE mapAccumR #-} -- | /O(n)/ map Word8 functions, provided with the index at each position mapIndexed :: (Int -> Word8 -> Word8) -> ByteString -> ByteString mapIndexed f = loopArr . loopUp (mapIndexEFL f) 0 {-# INLINE mapIndexed #-} -- --------------------------------------------------------------------- -- Building ByteStrings -- | 'scanl' is similar to 'foldl', but returns a list of successive -- reduced values from the left. This function will fuse. -- -- > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...] -- -- Note that -- -- > last (scanl f z xs) == foldl f z xs. scanl :: (Word8 -> Word8 -> Word8) -> Word8 -> ByteString -> ByteString #if !defined(LOOPU_FUSION) scanl f z ps = loopArr . loopUp (scanEFL f) z $ (ps `snoc` 0) #else scanl f z ps = loopArr . loopU (scanEFL f) z $ (ps `snoc` 0) #endif -- n.b. haskell's List scan returns a list one bigger than the -- input, so we need to snoc here to get some extra space, however, -- it breaks map/up fusion (i.e. scanl . map no longer fuses) {-# INLINE scanl #-} -- | 'scanl1' is a variant of 'scanl' that has no starting value argument. -- This function will fuse. -- -- > scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...] scanl1 :: (Word8 -> Word8 -> Word8) -> ByteString -> ByteString scanl1 f ps | null ps = empty | otherwise = scanl f (unsafeHead ps) (unsafeTail ps) {-# INLINE scanl1 #-} -- | scanr is the right-to-left dual of scanl. scanr :: (Word8 -> Word8 -> Word8) -> Word8 -> ByteString -> ByteString scanr f z ps = loopArr . loopDown (scanEFL (flip f)) z $ (0 `cons` ps) -- extra space {-# INLINE scanr #-} -- | 'scanr1' is a variant of 'scanr' that has no starting value argument. scanr1 :: (Word8 -> Word8 -> Word8) -> ByteString -> ByteString scanr1 f ps | null ps = empty | otherwise = scanr f (last ps) (init ps) -- todo, unsafe versions {-# INLINE scanr1 #-} -- --------------------------------------------------------------------- -- Unfolds and replicates -- | /O(n)/ 'replicate' @n x@ is a ByteString of length @n@ with @x@ -- the value of every element. The following holds: -- -- > replicate w c = unfoldr w (\u -> Just (u,u)) c -- -- This implemenation uses @memset(3)@ replicate :: Int -> Word8 -> ByteString replicate w c | w <= 0 = empty | otherwise = unsafeCreate w $ \ptr -> memset ptr c (fromIntegral w) >> return () -- | /O(n)/, where /n/ is the length of the result. The 'unfoldr' -- function is analogous to the List \'unfoldr\'. 'unfoldr' builds a -- ByteString from a seed value. The function takes the element and -- returns 'Nothing' if it is done producing the ByteString or returns -- 'Just' @(a,b)@, in which case, @a@ is the next byte in the string, -- and @b@ is the seed value for further production. -- -- Examples: -- -- > unfoldr (\x -> if x <= 5 then Just (x, x + 1) else Nothing) 0 -- > == pack [0, 1, 2, 3, 4, 5] -- unfoldr :: (a -> Maybe (Word8, a)) -> a -> ByteString unfoldr f = concat . unfoldChunk 32 64 where unfoldChunk n n' x = case unfoldrN n f x of (s, Nothing) -> s : [] (s, Just x') -> s : unfoldChunk n' (n+n') x' -- | /O(n)/ Like 'unfoldr', 'unfoldrN' builds a ByteString from a seed -- value. However, the length of the result is limited by the first -- argument to 'unfoldrN'. This function is more efficient than 'unfoldr' -- when the maximum length of the result is known. -- -- The following equation relates 'unfoldrN' and 'unfoldr': -- -- > unfoldrN n f s == take n (unfoldr f s) -- unfoldrN :: Int -> (a -> Maybe (Word8, a)) -> a -> (ByteString, Maybe a) unfoldrN i f x0 | i < 0 = (empty, Just x0) | otherwise = unsafePerformIO $ createAndTrim' i $ \p -> go p x0 0 where STRICT3(go) go p x n = case f x of Nothing -> return (0, n, Nothing) Just (w,x') | n == i -> return (0, n, Just x) | otherwise -> do poke p w go (p `plusPtr` 1) x' (n+1) -- --------------------------------------------------------------------- -- Substrings -- | /O(1)/ 'take' @n@, applied to a ByteString @xs@, returns the prefix -- of @xs@ of length @n@, or @xs@ itself if @n > 'length' xs@. take :: Int -> ByteString -> ByteString take n ps@(PS x s l) | n <= 0 = empty | n >= l = ps | otherwise = PS x s n {-# INLINE take #-} -- | /O(1)/ 'drop' @n xs@ returns the suffix of @xs@ after the first @n@ -- elements, or @[]@ if @n > 'length' xs@. drop :: Int -> ByteString -> ByteString drop n ps@(PS x s l) | n <= 0 = ps | n >= l = empty | otherwise = PS x (s+n) (l-n) {-# INLINE drop #-} -- | /O(1)/ 'splitAt' @n xs@ is equivalent to @('take' n xs, 'drop' n xs)@. splitAt :: Int -> ByteString -> (ByteString, ByteString) splitAt n ps@(PS x s l) | n <= 0 = (empty, ps) | n >= l = (ps, empty) | otherwise = (PS x s n, PS x (s+n) (l-n)) {-# INLINE splitAt #-} -- | 'takeWhile', applied to a predicate @p@ and a ByteString @xs@, -- returns the longest prefix (possibly empty) of @xs@ of elements that -- satisfy @p@. takeWhile :: (Word8 -> Bool) -> ByteString -> ByteString takeWhile f ps = unsafeTake (findIndexOrEnd (not . f) ps) ps {-# INLINE takeWhile #-} -- | 'dropWhile' @p xs@ returns the suffix remaining after 'takeWhile' @p xs@. dropWhile :: (Word8 -> Bool) -> ByteString -> ByteString dropWhile f ps = unsafeDrop (findIndexOrEnd (not . f) ps) ps {-# INLINE dropWhile #-} -- instead of findIndexOrEnd, we could use memchr here. -- | 'break' @p@ is equivalent to @'span' ('not' . p)@. break :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString) break p ps = case findIndexOrEnd p ps of n -> (unsafeTake n ps, unsafeDrop n ps) {-# INLINE [1] break #-} {-# RULES "FPS specialise break (x==)" forall x. break ((==) x) = breakByte x #-} #if __GLASGOW_HASKELL__ >= 605 {-# RULES "FPS specialise break (==x)" forall x. break (==x) = breakByte x #-} #endif -- | 'breakByte' breaks its ByteString argument at the first occurence -- of the specified byte. It is more efficient than 'break' as it is -- implemented with @memchr(3)@. I.e. -- -- > break (=='c') "abcd" == breakByte 'c' "abcd" -- breakByte :: Word8 -> ByteString -> (ByteString, ByteString) breakByte c p = case elemIndex c p of Nothing -> (p,empty) Just n -> (unsafeTake n p, unsafeDrop n p) {-# INLINE breakByte #-} -- | 'breakEnd' behaves like 'break' but from the end of the 'ByteString' -- -- breakEnd p == spanEnd (not.p) breakEnd :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString) breakEnd p ps = splitAt (findFromEndUntil p ps) ps -- | 'span' @p xs@ breaks the ByteString into two segments. It is -- equivalent to @('takeWhile' p xs, 'dropWhile' p xs)@ span :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString) span p ps = break (not . p) ps {-# INLINE [1] span #-} -- | 'spanByte' breaks its ByteString argument at the first -- occurence of a byte other than its argument. It is more efficient -- than 'span (==)' -- -- > span (=='c') "abcd" == spanByte 'c' "abcd" -- spanByte :: Word8 -> ByteString -> (ByteString, ByteString) spanByte c ps@(PS x s l) = inlinePerformIO $ withForeignPtr x $ \p -> go (p `plusPtr` s) 0 where STRICT2(go) go p i | i >= l = return (ps, empty) | otherwise = do c' <- peekByteOff p i if c /= c' then return (unsafeTake i ps, unsafeDrop i ps) else go p (i+1) {-# INLINE spanByte #-} {-# RULES "FPS specialise span (x==)" forall x. span ((==) x) = spanByte x #-} #if __GLASGOW_HASKELL__ >= 605 {-# RULES "FPS specialise span (==x)" forall x. span (==x) = spanByte x #-} #endif -- | 'spanEnd' behaves like 'span' but from the end of the 'ByteString'. -- We have -- -- > spanEnd (not.isSpace) "x y z" == ("x y ","z") -- -- and -- -- > spanEnd (not . isSpace) ps -- > == -- > let (x,y) = span (not.isSpace) (reverse ps) in (reverse y, reverse x) -- spanEnd :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString) spanEnd p ps = splitAt (findFromEndUntil (not.p) ps) ps -- | /O(n)/ Splits a 'ByteString' into components delimited by -- separators, where the predicate returns True for a separator element. -- The resulting components do not contain the separators. Two adjacent -- separators result in an empty component in the output. eg. -- -- > splitWith (=='a') "aabbaca" == ["","","bb","c",""] -- > splitWith (=='a') [] == [] -- splitWith :: (Word8 -> Bool) -> ByteString -> [ByteString] #if defined(__GLASGOW_HASKELL__) splitWith _pred (PS _ _ 0) = [] splitWith pred_ (PS fp off len) = splitWith0 pred# off len fp where pred# c# = pred_ (W8# c#) STRICT4(splitWith0) splitWith0 pred' off' len' fp' = withPtr fp $ \p -> splitLoop pred' p 0 off' len' fp' splitLoop :: (Word# -> Bool) -> Ptr Word8 -> Int -> Int -> Int -> ForeignPtr Word8 -> IO [ByteString] splitLoop pred' p idx' off' len' fp' | pred' `seq` p `seq` idx' `seq` off' `seq` len' `seq` fp' `seq` False = undefined | idx' >= len' = return [PS fp' off' idx'] | otherwise = do w <- peekElemOff p (off'+idx') if pred' (case w of W8# w# -> w#) then return (PS fp' off' idx' : splitWith0 pred' (off'+idx'+1) (len'-idx'-1) fp') else splitLoop pred' p (idx'+1) off' len' fp' {-# INLINE splitWith #-} #else splitWith _ (PS _ _ 0) = [] splitWith p ps = loop p ps where STRICT2(loop) loop q qs = if null rest then [chunk] else chunk : loop q (unsafeTail rest) where (chunk,rest) = break q qs #endif -- | /O(n)/ Break a 'ByteString' into pieces separated by the byte -- argument, consuming the delimiter. I.e. -- -- > split '\n' "a\nb\nd\ne" == ["a","b","d","e"] -- > split 'a' "aXaXaXa" == ["","X","X","X",""] -- > split 'x' "x" == ["",""] -- -- and -- -- > join [c] . split c == id -- > split == splitWith . (==) -- -- As for all splitting functions in this library, this function does -- not copy the substrings, it just constructs new 'ByteStrings' that -- are slices of the original. -- split :: Word8 -> ByteString -> [ByteString] split _ (PS _ _ 0) = [] split w (PS x s l) = inlinePerformIO $ withForeignPtr x $ \p -> do let ptr = p `plusPtr` s STRICT1(loop) loop n = let q = inlinePerformIO $ memchr (ptr `plusPtr` n) w (fromIntegral (l-n)) in if q == nullPtr then [PS x (s+n) (l-n)] else let i = q `minusPtr` ptr in PS x (s+n) (i-n) : loop (i+1) return (loop 0) {-# INLINE split #-} {- -- slower. but stays inside Haskell. split _ (PS _ _ 0) = [] split (W8# w#) (PS fp off len) = splitWith' off len fp where splitWith' off' len' fp' = withPtr fp $ \p -> splitLoop p 0 off' len' fp' splitLoop :: Ptr Word8 -> Int -> Int -> Int -> ForeignPtr Word8 -> IO [ByteString] STRICT5(splitLoop) splitLoop p idx' off' len' fp' | p `seq` idx' `seq` off' `seq` len' `seq` fp' `seq` False = undefined | idx' >= len' = return [PS fp' off' idx'] | otherwise = do (W8# x#) <- peekElemOff p (off'+idx') if word2Int# w# ==# word2Int# x# then return (PS fp' off' idx' : splitWith' (off'+idx'+1) (len'-idx'-1) fp') else splitLoop p (idx'+1) off' len' fp' -} {- -- | Like 'splitWith', except that sequences of adjacent separators are -- treated as a single separator. eg. -- -- > tokens (=='a') "aabbaca" == ["bb","c"] -- tokens :: (Word8 -> Bool) -> ByteString -> [ByteString] tokens f = P.filter (not.null) . splitWith f {-# INLINE tokens #-} -} -- | The 'group' function takes a ByteString and returns a list of -- ByteStrings such that the concatenation of the result is equal to the -- argument. Moreover, each sublist in the result contains only equal -- elements. For example, -- -- > group "Mississippi" = ["M","i","ss","i","ss","i","pp","i"] -- -- It is a special case of 'groupBy', which allows the programmer to -- supply their own equality test. It is about 40% faster than -- /groupBy (==)/ group :: ByteString -> [ByteString] group xs | null xs = [] | otherwise = ys : group zs where (ys, zs) = spanByte (unsafeHead xs) xs -- | The 'groupBy' function is the non-overloaded version of 'group'. groupBy :: (Word8 -> Word8 -> Bool) -> ByteString -> [ByteString] groupBy k xs | null xs = [] | otherwise = unsafeTake n xs : groupBy k (unsafeDrop n xs) where n = 1 + findIndexOrEnd (not . k (unsafeHead xs)) (unsafeTail xs) -- | /O(n)/ The 'join' function takes a 'ByteString' and a list of -- 'ByteString's and concatenates the list after interspersing the first -- argument between each element of the list. join :: ByteString -> [ByteString] -> ByteString join s = concat . (List.intersperse s) {-# INLINE [1] join #-} {-# RULES "FPS specialise join c -> joinByte" forall c s1 s2 . join (singleton c) (s1 : s2 : []) = joinWithByte c s1 s2 #-} -- -- | /O(n)/ joinWithByte. An efficient way to join to two ByteStrings -- with a char. Around 4 times faster than the generalised join. -- joinWithByte :: Word8 -> ByteString -> ByteString -> ByteString joinWithByte c f@(PS ffp s l) g@(PS fgp t m) = unsafeCreate len $ \ptr -> withForeignPtr ffp $ \fp -> withForeignPtr fgp $ \gp -> do memcpy ptr (fp `plusPtr` s) (fromIntegral l) poke (ptr `plusPtr` l) c memcpy (ptr `plusPtr` (l + 1)) (gp `plusPtr` t) (fromIntegral m) where len = length f + length g + 1 {-# INLINE joinWithByte #-} -- --------------------------------------------------------------------- -- Indexing ByteStrings -- | /O(1)/ 'ByteString' index (subscript) operator, starting from 0. index :: ByteString -> Int -> Word8 index ps n | n < 0 = moduleError "index" ("negative index: " ++ show n) | n >= length ps = moduleError "index" ("index too large: " ++ show n ++ ", length = " ++ show (length ps)) | otherwise = ps `unsafeIndex` n {-# INLINE index #-} -- | /O(n)/ The 'elemIndex' function returns the index of the first -- element in the given 'ByteString' which is equal to the query -- element, or 'Nothing' if there is no such element. -- This implementation uses memchr(3). elemIndex :: Word8 -> ByteString -> Maybe Int elemIndex c (PS x s l) = inlinePerformIO $ withForeignPtr x $ \p -> do let p' = p `plusPtr` s q <- memchr p' c (fromIntegral l) return $! if q == nullPtr then Nothing else Just $! q `minusPtr` p' {-# INLINE elemIndex #-} -- | /O(n)/ The 'elemIndexEnd' function returns the last index of the -- element in the given 'ByteString' which is equal to the query -- element, or 'Nothing' if there is no such element. The following -- holds: -- -- > elemIndexEnd c xs == -- > (-) (length xs - 1) `fmap` elemIndex c (reverse xs) -- elemIndexEnd :: Word8 -> ByteString -> Maybe Int elemIndexEnd ch (PS x s l) = inlinePerformIO $ withForeignPtr x $ \p -> go (p `plusPtr` s) (l-1) where STRICT2(go) go p i | i < 0 = return Nothing | otherwise = do ch' <- peekByteOff p i if ch == ch' then return $ Just i else go p (i-1) {-# INLINE elemIndexEnd #-} -- | /O(n)/ The 'elemIndices' function extends 'elemIndex', by returning -- the indices of all elements equal to the query element, in ascending order. -- This implementation uses memchr(3). elemIndices :: Word8 -> ByteString -> [Int] elemIndices w (PS x s l) = inlinePerformIO $ withForeignPtr x $ \p -> do let ptr = p `plusPtr` s STRICT1(loop) loop n = let q = inlinePerformIO $ memchr (ptr `plusPtr` n) w (fromIntegral (l - n)) in if q == nullPtr then [] else let i = q `minusPtr` ptr in i : loop (i+1) return $! loop 0 {-# INLINE elemIndices #-} {- -- much slower elemIndices :: Word8 -> ByteString -> [Int] elemIndices c ps = loop 0 ps where STRICT2(loop) loop _ ps' | null ps' = [] loop n ps' | c == unsafeHead ps' = n : loop (n+1) (unsafeTail ps') | otherwise = loop (n+1) (unsafeTail ps') -} -- | count returns the number of times its argument appears in the ByteString -- -- > count = length . elemIndices -- -- But more efficiently than using length on the intermediate list. count :: Word8 -> ByteString -> Int count w (PS x s m) = inlinePerformIO $ withForeignPtr x $ \p -> fmap fromIntegral $ c_count (p `plusPtr` s) (fromIntegral m) w {-# INLINE count #-} {- -- -- around 30% slower -- count w (PS x s m) = inlinePerformIO $ withForeignPtr x $ \p -> go (p `plusPtr` s) (fromIntegral m) 0 where go :: Ptr Word8 -> CSize -> Int -> IO Int STRICT3(go) go p l i = do q <- memchr p w l if q == nullPtr then return i else do let k = fromIntegral $ q `minusPtr` p go (q `plusPtr` 1) (l-k-1) (i+1) -} -- | The 'findIndex' function takes a predicate and a 'ByteString' and -- returns the index of the first element in the ByteString -- satisfying the predicate. findIndex :: (Word8 -> Bool) -> ByteString -> Maybe Int findIndex k (PS x s l) = inlinePerformIO $ withForeignPtr x $ \f -> go (f `plusPtr` s) 0 where STRICT2(go) go ptr n | n >= l = return Nothing | otherwise = do w <- peek ptr if k w then return (Just n) else go (ptr `plusPtr` 1) (n+1) {-# INLINE findIndex #-} -- | The 'findIndices' function extends 'findIndex', by returning the -- indices of all elements satisfying the predicate, in ascending order. findIndices :: (Word8 -> Bool) -> ByteString -> [Int] findIndices p ps = loop 0 ps where STRICT2(loop) loop n qs | null qs = [] | p (unsafeHead qs) = n : loop (n+1) (unsafeTail qs) | otherwise = loop (n+1) (unsafeTail qs) -- --------------------------------------------------------------------- -- Searching ByteStrings -- | /O(n)/ 'elem' is the 'ByteString' membership predicate. elem :: Word8 -> ByteString -> Bool elem c ps = case elemIndex c ps of Nothing -> False ; _ -> True {-# INLINE elem #-} -- | /O(n)/ 'notElem' is the inverse of 'elem' notElem :: Word8 -> ByteString -> Bool notElem c ps = not (elem c ps) {-# INLINE notElem #-} -- | /O(n)/ 'filter', applied to a predicate and a ByteString, -- returns a ByteString containing those characters that satisfy the -- predicate. This function is subject to array fusion. filter :: (Word8 -> Bool) -> ByteString -> ByteString #if defined(LOOPU_FUSION) filter p = loopArr . loopU (filterEFL p) NoAcc #elif defined(LOOPUP_FUSION) filter p = loopArr . loopUp (filterEFL p) NoAcc #elif defined(LOOPNOACC_FUSION) filter p = loopArr . loopNoAcc (filterEFL p) #else filter f = loopArr . loopFilter f #endif {-# INLINE filter #-} {- -- | /O(n)/ 'filter\'' is a non-fuseable version of filter, that may be -- around 2x faster for some one-shot applications. filter' :: (Word8 -> Bool) -> ByteString -> ByteString filter' k ps@(PS x s l) | null ps = ps | otherwise = unsafePerformIO $ createAndTrim l $ \p -> withForeignPtr x $ \f -> do t <- go (f `plusPtr` s) p (f `plusPtr` (s + l)) return $! t `minusPtr` p -- actual length where STRICT3(go) go f t end | f == end = return t | otherwise = do w <- peek f if k w then poke t w >> go (f `plusPtr` 1) (t `plusPtr` 1) end else go (f `plusPtr` 1) t end {-# INLINE filter' #-} -} -- -- | /O(n)/ A first order equivalent of /filter . (==)/, for the common -- case of filtering a single byte. It is more efficient to use -- /filterByte/ in this case. -- -- > filterByte == filter . (==) -- -- filterByte is around 10x faster, and uses much less space, than its -- filter equivalent -- filterByte :: Word8 -> ByteString -> ByteString filterByte w ps = replicate (count w ps) w {-# INLINE filterByte #-} {-# RULES "FPS specialise filter (== x)" forall x. filter ((==) x) = filterByte x #-} #if __GLASGOW_HASKELL__ >= 605 {-# RULES "FPS specialise filter (== x)" forall x. filter (== x) = filterByte x #-} #endif -- | /O(n)/ The 'find' function takes a predicate and a ByteString, -- and returns the first element in matching the predicate, or 'Nothing' -- if there is no such element. -- -- > find f p = case findIndex f p of Just n -> Just (p ! n) ; _ -> Nothing -- find :: (Word8 -> Bool) -> ByteString -> Maybe Word8 find f p = case findIndex f p of Just n -> Just (p `unsafeIndex` n) _ -> Nothing {-# INLINE find #-} {- -- -- fuseable, but we don't want to walk the whole array. -- find k = foldl findEFL Nothing where findEFL a@(Just _) _ = a findEFL _ c | k c = Just c | otherwise = Nothing -} -- --------------------------------------------------------------------- -- Searching for substrings -- | /O(n)/ The 'isPrefixOf' function takes two ByteStrings and returns 'True' -- iff the first is a prefix of the second. isPrefixOf :: ByteString -> ByteString -> Bool isPrefixOf (PS x1 s1 l1) (PS x2 s2 l2) | l1 == 0 = True | l2 < l1 = False | otherwise = inlinePerformIO $ withForeignPtr x1 $ \p1 -> withForeignPtr x2 $ \p2 -> do i <- memcmp (p1 `plusPtr` s1) (p2 `plusPtr` s2) (fromIntegral l1) return $! i == 0 -- | /O(n)/ The 'isSuffixOf' function takes two ByteStrings and returns 'True' -- iff the first is a suffix of the second. -- -- The following holds: -- -- > isSuffixOf x y == reverse x `isPrefixOf` reverse y -- -- However, the real implemenation uses memcmp to compare the end of the -- string only, with no reverse required.. isSuffixOf :: ByteString -> ByteString -> Bool isSuffixOf (PS x1 s1 l1) (PS x2 s2 l2) | l1 == 0 = True | l2 < l1 = False | otherwise = inlinePerformIO $ withForeignPtr x1 $ \p1 -> withForeignPtr x2 $ \p2 -> do i <- memcmp (p1 `plusPtr` s1) (p2 `plusPtr` s2 `plusPtr` (l2 - l1)) (fromIntegral l1) return $! i == 0 -- | Check whether one string is a substring of another. @isSubstringOf -- p s@ is equivalent to @not (null (findSubstrings p s))@. isSubstringOf :: ByteString -- ^ String to search for. -> ByteString -- ^ String to search in. -> Bool isSubstringOf p s = not $ P.null $ findSubstrings p s -- | Get the first index of a substring in another string, -- or 'Nothing' if the string is not found. -- @findSubstring p s@ is equivalent to @listToMaybe (findSubstrings p s)@. findSubstring :: ByteString -- ^ String to search for. -> ByteString -- ^ String to seach in. -> Maybe Int findSubstring = (listToMaybe .) . findSubstrings -- | Find the indexes of all (possibly overlapping) occurances of a -- substring in a string. This function uses the Knuth-Morris-Pratt -- string matching algorithm. findSubstrings :: ByteString -- ^ String to search for. -> ByteString -- ^ String to seach in. -> [Int] findSubstrings pat@(PS _ _ m) str@(PS _ _ n) = search 0 0 where patc x = pat `unsafeIndex` x strc x = str `unsafeIndex` x -- maybe we should make kmpNext a UArray before using it in search? kmpNext = listArray (0,m) (-1:kmpNextL pat (-1)) kmpNextL p _ | null p = [] kmpNextL p j = let j' = next (unsafeHead p) j + 1 ps = unsafeTail p x = if not (null ps) && unsafeHead ps == patc j' then kmpNext Array.! j' else j' in x:kmpNextL ps j' search i j = match ++ rest -- i: position in string, j: position in pattern where match = if j == m then [(i - j)] else [] rest = if i == n then [] else search (i+1) (next (strc i) j + 1) next c j | j >= 0 && (j == m || c /= patc j) = next c (kmpNext Array.! j) | otherwise = j -- --------------------------------------------------------------------- -- Zipping -- | /O(n)/ 'zip' takes two ByteStrings and returns a list of -- corresponding pairs of bytes. If one input ByteString is short, -- excess elements of the longer ByteString are discarded. This is -- equivalent to a pair of 'unpack' operations. zip :: ByteString -> ByteString -> [(Word8,Word8)] zip ps qs | null ps || null qs = [] | otherwise = (unsafeHead ps, unsafeHead qs) : zip (unsafeTail ps) (unsafeTail qs) -- | 'zipWith' generalises 'zip' by zipping with the function given as -- the first argument, instead of a tupling function. For example, -- @'zipWith' (+)@ is applied to two ByteStrings to produce the list of -- corresponding sums. zipWith :: (Word8 -> Word8 -> a) -> ByteString -> ByteString -> [a] zipWith f ps qs | null ps || null qs = [] | otherwise = f (unsafeHead ps) (unsafeHead qs) : zipWith f (unsafeTail ps) (unsafeTail qs) #if defined(__GLASGOW_HASKELL__) {-# INLINE [1] zipWith #-} #endif -- -- | A specialised version of zipWith for the common case of a -- simultaneous map over two bytestrings, to build a 3rd. Rewrite rules -- are used to automatically covert zipWith into zipWith' when a pack is -- performed on the result of zipWith, but we also export it for -- convenience. -- zipWith' :: (Word8 -> Word8 -> Word8) -> ByteString -> ByteString -> ByteString zipWith' f (PS fp s l) (PS fq t m) = inlinePerformIO $ withForeignPtr fp $ \a -> withForeignPtr fq $ \b -> create len $ zipWith_ 0 (a `plusPtr` s) (b `plusPtr` t) where zipWith_ :: Int -> Ptr Word8 -> Ptr Word8 -> Ptr Word8 -> IO () STRICT4(zipWith_) zipWith_ n p1 p2 r | n >= len = return () | otherwise = do x <- peekByteOff p1 n y <- peekByteOff p2 n pokeByteOff r n (f x y) zipWith_ (n+1) p1 p2 r len = min l m {-# INLINE zipWith' #-} {-# RULES "FPS specialise zipWith" forall (f :: Word8 -> Word8 -> Word8) p q . zipWith f p q = unpack (zipWith' f p q) #-} -- | /O(n)/ 'unzip' transforms a list of pairs of bytes into a pair of -- ByteStrings. Note that this performs two 'pack' operations. unzip :: [(Word8,Word8)] -> (ByteString,ByteString) unzip ls = (pack (P.map fst ls), pack (P.map snd ls)) {-# INLINE unzip #-} -- --------------------------------------------------------------------- -- Special lists -- | /O(n)/ Return all initial segments of the given 'ByteString', shortest first. inits :: ByteString -> [ByteString] inits (PS x s l) = [PS x s n | n <- [0..l]] -- | /O(n)/ Return all final segments of the given 'ByteString', longest first. tails :: ByteString -> [ByteString] tails p | null p = [empty] | otherwise = p : tails (unsafeTail p) -- less efficent spacewise: tails (PS x s l) = [PS x (s+n) (l-n) | n <- [0..l]] -- --------------------------------------------------------------------- -- ** Ordered 'ByteString's -- | /O(n)/ Sort a ByteString efficiently, using counting sort. sort :: ByteString -> ByteString sort (PS input s l) = unsafeCreate l $ \p -> allocaArray 256 $ \arr -> do memset (castPtr arr) 0 (256 * fromIntegral (sizeOf (undefined :: CSize))) withForeignPtr input (\x -> countOccurrences arr (x `plusPtr` s) l) let STRICT2(go) go 256 _ = return () go i ptr = do n <- peekElemOff arr i when (n /= 0) $ memset ptr (fromIntegral i) n >> return () go (i + 1) (ptr `plusPtr` (fromIntegral n)) go 0 p {- sort :: ByteString -> ByteString sort (PS x s l) = unsafeCreate l $ \p -> withForeignPtr x $ \f -> do memcpy p (f `plusPtr` s) l c_qsort p l -- inplace -} -- The 'sortBy' function is the non-overloaded version of 'sort'. -- -- Try some linear sorts: radix, counting -- Or mergesort. -- -- sortBy :: (Word8 -> Word8 -> Ordering) -> ByteString -> ByteString -- sortBy f ps = undefined -- --------------------------------------------------------------------- -- Low level constructors -- | /O(n) construction/ Use a @ByteString@ with a function requiring a -- null-terminated @CString@. The @CString@ will be freed -- automatically. This is a memcpy(3). useAsCString :: ByteString -> (CString -> IO a) -> IO a useAsCString (PS ps s l) = bracket alloc (c_free.castPtr) where alloc = withForeignPtr ps $ \p -> do buf <- c_malloc (fromIntegral l+1) memcpy (castPtr buf) (castPtr p `plusPtr` s) (fromIntegral l) poke (buf `plusPtr` l) (0::Word8) -- n.b. return (castPtr buf) -- | /O(n) construction/ Use a @ByteString@ with a function requiring a @CStringLen@. -- As for @useAsCString@ this function makes a copy of the original @ByteString@. useAsCStringLen :: ByteString -> (CStringLen -> IO a) -> IO a useAsCStringLen p@(PS _ _ l) f = useAsCString p $ \cstr -> f (cstr,l) ------------------------------------------------------------------------ -- | /O(n)./ Construct a new @ByteString@ from a @CString@. The -- resulting @ByteString@ is an immutable copy of the original -- @CString@, and is managed on the Haskell heap. The original -- @CString@ must be null terminated. packCString :: CString -> IO ByteString packCString cstr = do len <- c_strlen cstr packCStringLen (cstr, fromIntegral len) -- | /O(n)./ Construct a new @ByteString@ from a @CStringLen@. The -- resulting @ByteString@ is an immutable copy of the original @CStringLen@. -- The @ByteString@ is a normal Haskell value and will be managed on the -- Haskell heap. packCStringLen :: CStringLen -> IO ByteString packCStringLen (cstr, len) = create len $ \p -> memcpy p (castPtr cstr) (fromIntegral len) ------------------------------------------------------------------------ -- | /O(n)/ Make a copy of the 'ByteString' with its own storage. -- This is mainly useful to allow the rest of the data pointed -- to by the 'ByteString' to be garbage collected, for example -- if a large string has been read in, and only a small part of it -- is needed in the rest of the program. -- copy :: ByteString -> ByteString copy (PS x s l) = unsafeCreate l $ \p -> withForeignPtr x $ \f -> memcpy p (f `plusPtr` s) (fromIntegral l) -- --------------------------------------------------------------------- -- line IO -- | Read a line from stdin. getLine :: IO ByteString getLine = hGetLine stdin {- -- | Lazily construct a list of lines of ByteStrings. This will be much -- better on memory consumption than using 'hGetContents >>= lines' -- If you're considering this, a better choice might be to use -- Data.ByteString.Lazy hGetLines :: Handle -> IO [ByteString] hGetLines h = go where go = unsafeInterleaveIO $ do e <- hIsEOF h if e then return [] else do x <- hGetLine h xs <- go return (x:xs) -} -- | Read a line from a handle hGetLine :: Handle -> IO ByteString #if !defined(__GLASGOW_HASKELL__) hGetLine h = System.IO.hGetLine h >>= return . pack . P.map c2w #else hGetLine h = wantReadableHandle "Data.ByteString.hGetLine" h $ \ handle_ -> do case haBufferMode handle_ of NoBuffering -> error "no buffering" _other -> hGetLineBuffered handle_ where hGetLineBuffered handle_ = do let ref = haBuffer handle_ buf <- readIORef ref hGetLineBufferedLoop handle_ ref buf 0 [] hGetLineBufferedLoop handle_ ref buf@Buffer{ bufRPtr=r, bufWPtr=w, bufBuf=raw } len xss = len `seq` do off <- findEOL r w raw let new_len = len + off - r xs <- mkPS raw r off -- if eol == True, then off is the offset of the '\n' -- otherwise off == w and the buffer is now empty. if off /= w then do if (w == off + 1) then writeIORef ref buf{ bufRPtr=0, bufWPtr=0 } else writeIORef ref buf{ bufRPtr = off + 1 } mkBigPS new_len (xs:xss) else do maybe_buf <- maybeFillReadBuffer (haFD handle_) True (haIsStream handle_) buf{ bufWPtr=0, bufRPtr=0 } case maybe_buf of -- Nothing indicates we caught an EOF, and we may have a -- partial line to return. Nothing -> do writeIORef ref buf{ bufRPtr=0, bufWPtr=0 } if new_len > 0 then mkBigPS new_len (xs:xss) else ioe_EOF Just new_buf -> hGetLineBufferedLoop handle_ ref new_buf new_len (xs:xss) -- find the end-of-line character, if there is one findEOL r w raw | r == w = return w | otherwise = do (c,r') <- readCharFromBuffer raw r if c == '\n' then return r -- NB. not r': don't include the '\n' else findEOL r' w raw maybeFillReadBuffer fd is_line is_stream buf = catch (do buf' <- fillReadBuffer fd is_line is_stream buf return (Just buf')) (\e -> if isEOFError e then return Nothing else ioError e) -- TODO, rewrite to use normal memcpy mkPS :: RawBuffer -> Int -> Int -> IO ByteString mkPS buf start end = let len = end - start in create len $ \p -> do memcpy_ptr_baoff p buf (fromIntegral start) (fromIntegral len) return () mkBigPS :: Int -> [ByteString] -> IO ByteString mkBigPS _ [ps] = return ps mkBigPS _ pss = return $! concat (P.reverse pss) #endif -- --------------------------------------------------------------------- -- Block IO -- | Outputs a 'ByteString' to the specified 'Handle'. hPut :: Handle -> ByteString -> IO () hPut _ (PS _ _ 0) = return () hPut h (PS ps s l) = withForeignPtr ps $ \p-> hPutBuf h (p `plusPtr` s) l -- | A synonym for @hPut@, for compatibility hPutStr :: Handle -> ByteString -> IO () hPutStr = hPut -- | Write a ByteString to a handle, appending a newline byte hPutStrLn :: Handle -> ByteString -> IO () hPutStrLn h ps | length ps < 1024 = hPut h (ps `snoc` 0x0a) | otherwise = hPut h ps >> hPut h (singleton (0x0a)) -- don't copy -- | Write a ByteString to stdout putStr :: ByteString -> IO () putStr = hPut stdout -- | Write a ByteString to stdout, appending a newline byte putStrLn :: ByteString -> IO () putStrLn = hPutStrLn stdout -- | Read a 'ByteString' directly from the specified 'Handle'. This -- is far more efficient than reading the characters into a 'String' -- and then using 'pack'. hGet :: Handle -> Int -> IO ByteString hGet _ 0 = return empty hGet h i = createAndTrim i $ \p -> hGetBuf h p i -- | hGetNonBlocking is identical to 'hGet', except that it will never block -- waiting for data to become available, instead it returns only whatever data -- is available. hGetNonBlocking :: Handle -> Int -> IO ByteString #if defined(__GLASGOW_HASKELL__) hGetNonBlocking _ 0 = return empty hGetNonBlocking h i = createAndTrim i $ \p -> hGetBufNonBlocking h p i #else hGetNonBlocking = hGet #endif -- | Read entire handle contents into a 'ByteString'. -- This function reads chunks at a time, doubling the chunksize on each -- read. The final buffer is then realloced to the appropriate size. For -- files > half of available memory, this may lead to memory exhaustion. -- Consider using 'readFile' in this case. -- -- As with 'hGet', the string representation in the file is assumed to -- be ISO-8859-1. -- hGetContents :: Handle -> IO ByteString hGetContents h = do let start_size = 1024 p <- mallocArray start_size i <- hGetBuf h p start_size if i < start_size then do p' <- reallocArray p i fp <- newForeignFreePtr p' return $! PS fp 0 i else f p start_size where f p s = do let s' = 2 * s p' <- reallocArray p s' i <- hGetBuf h (p' `plusPtr` s) s if i < s then do let i' = s + i p'' <- reallocArray p' i' fp <- newForeignFreePtr p'' return $! PS fp 0 i' else f p' s' -- | getContents. Equivalent to hGetContents stdin getContents :: IO ByteString getContents = hGetContents stdin -- | The interact function takes a function of type @ByteString -> ByteString@ -- as its argument. The entire input from the standard input device is passed -- to this function as its argument, and the resulting string is output on the -- standard output device. It's great for writing one line programs! interact :: (ByteString -> ByteString) -> IO () interact transformer = putStr . transformer =<< getContents -- | Read an entire file strictly into a 'ByteString'. This is far more -- efficient than reading the characters into a 'String' and then using -- 'pack'. It also may be more efficient than opening the file and -- reading it using hGet. Files are read using 'binary mode' on Windows, -- for 'text mode' use the Char8 version of this function. readFile :: FilePath -> IO ByteString readFile f = bracket (openBinaryFile f ReadMode) hClose (\h -> hFileSize h >>= hGet h . fromIntegral) -- | Write a 'ByteString' to a file. writeFile :: FilePath -> ByteString -> IO () writeFile f txt = bracket (openBinaryFile f WriteMode) hClose (\h -> hPut h txt) -- | Append a 'ByteString' to a file. appendFile :: FilePath -> ByteString -> IO () appendFile f txt = bracket (openBinaryFile f AppendMode) hClose (\h -> hPut h txt) {- -- -- Disable until we can move it into a portable .hsc file -- -- | Like readFile, this reads an entire file directly into a -- 'ByteString', but it is even more efficient. It involves directly -- mapping the file to memory. This has the advantage that the contents -- of the file never need to be copied. Also, under memory pressure the -- page may simply be discarded, while in the case of readFile it would -- need to be written to swap. If you read many small files, mmapFile -- will be less memory-efficient than readFile, since each mmapFile -- takes up a separate page of memory. Also, you can run into bus -- errors if the file is modified. As with 'readFile', the string -- representation in the file is assumed to be ISO-8859-1. -- -- On systems without mmap, this is the same as a readFile. -- mmapFile :: FilePath -> IO ByteString mmapFile f = mmap f >>= \(fp,l) -> return $! PS fp 0 l mmap :: FilePath -> IO (ForeignPtr Word8, Int) mmap f = do h <- openBinaryFile f ReadMode l <- fromIntegral `fmap` hFileSize h -- Don't bother mmaping small files because each mmapped file takes up -- at least one full VM block. if l < mmap_limit then do thefp <- mallocByteString l withForeignPtr thefp $ \p-> hGetBuf h p l hClose h return (thefp, l) else do -- unix only :( fd <- fromIntegral `fmap` handleToFd h p <- my_mmap l fd fp <- if p == nullPtr then do thefp <- mallocByteString l withForeignPtr thefp $ \p' -> hGetBuf h p' l return thefp else do -- The munmap leads to crashes on OpenBSD. -- maybe there's a use after unmap in there somewhere? -- Bulat suggests adding the hClose to the -- finalizer, excellent idea. #if !defined(__OpenBSD__) let unmap = c_munmap p l >> return () #else let unmap = return () #endif fp <- newForeignPtr p unmap return fp c_close fd hClose h return (fp, l) where mmap_limit = 16*1024 -} -- --------------------------------------------------------------------- -- Internal utilities -- | 'findIndexOrEnd' is a variant of findIndex, that returns the length -- of the string if no element is found, rather than Nothing. findIndexOrEnd :: (Word8 -> Bool) -> ByteString -> Int findIndexOrEnd k (PS x s l) = inlinePerformIO $ withForeignPtr x $ \f -> go (f `plusPtr` s) 0 where STRICT2(go) go ptr n | n >= l = return l | otherwise = do w <- peek ptr if k w then return n else go (ptr `plusPtr` 1) (n+1) {-# INLINE findIndexOrEnd #-} -- | Perform an operation with a temporary ByteString withPtr :: ForeignPtr a -> (Ptr a -> IO b) -> b withPtr fp io = inlinePerformIO (withForeignPtr fp io) {-# INLINE withPtr #-} -- Common up near identical calls to `error' to reduce the number -- constant strings created when compiled: errorEmptyList :: String -> a errorEmptyList fun = moduleError fun "empty ByteString" {-# NOINLINE errorEmptyList #-} moduleError :: String -> String -> a moduleError fun msg = error ("Data.ByteString." ++ fun ++ ':':' ':msg) {-# NOINLINE moduleError #-} -- Find from the end of the string using predicate findFromEndUntil :: (Word8 -> Bool) -> ByteString -> Int STRICT2(findFromEndUntil) findFromEndUntil f ps@(PS x s l) = if null ps then 0 else if f (last ps) then l else findFromEndUntil f (PS x s (l-1))