{-# OPTIONS_GHC -fglasgow-exts #-} -- -- Uses multi-param type classes -- module QuickCheckUtils where import Test.QuickCheck.Batch import Test.QuickCheck import Text.Show.Functions import Control.Monad ( liftM2 ) import Data.Char import Data.List import Data.Word import Data.Int import System.Random import System.IO import Data.ByteString.Fusion import qualified Data.ByteString as P import qualified Data.ByteString.Lazy as L import qualified Data.ByteString.Base as L (LazyByteString(..)) import qualified Data.ByteString.Char8 as PC import qualified Data.ByteString.Lazy.Char8 as LC -- Enable this to get verbose test output. Including the actual tests. debug = False mytest :: Testable a => a -> Int -> IO () mytest a n = mycheck defaultConfig { configMaxTest=n , configEvery= \n args -> if debug then show n ++ ":\n" ++ unlines args else [] } a mycheck :: Testable a => Config -> a -> IO () mycheck config a = do rnd <- newStdGen mytests config (evaluate a) rnd 0 0 [] mytests :: Config -> Gen Result -> StdGen -> Int -> Int -> [[String]] -> IO () mytests config gen rnd0 ntest nfail stamps | ntest == configMaxTest config = do done "OK," ntest stamps | nfail == configMaxFail config = do done "Arguments exhausted after" ntest stamps | otherwise = do putStr (configEvery config ntest (arguments result)) >> hFlush stdout case ok result of Nothing -> mytests config gen rnd1 ntest (nfail+1) stamps Just True -> mytests config gen rnd1 (ntest+1) nfail (stamp result:stamps) Just False -> putStr ( "Falsifiable after " ++ show ntest ++ " tests:\n" ++ unlines (arguments result) ) >> hFlush stdout where result = generate (configSize config ntest) rnd2 gen (rnd1,rnd2) = split rnd0 done :: String -> Int -> [[String]] -> IO () done mesg ntest stamps = do putStr ( mesg ++ " " ++ show ntest ++ " tests" ++ table ) where table = display . map entry . reverse . sort . map pairLength . group . sort . filter (not . null) $ stamps display [] = ".\n" display [x] = " (" ++ x ++ ").\n" display xs = ".\n" ++ unlines (map (++ ".") xs) pairLength xss@(xs:_) = (length xss, xs) entry (n, xs) = percentage n ntest ++ " " ++ concat (intersperse ", " xs) percentage n m = show ((100 * n) `div` m) ++ "%" ------------------------------------------------------------------------ instance Arbitrary Char where arbitrary = choose ('\0','\255') coarbitrary c = variant (ord c `rem` 4) instance (Arbitrary a, Arbitrary b) => Arbitrary (PairS a b) where arbitrary = liftM2 (:*:) arbitrary arbitrary coarbitrary (a :*: b) = coarbitrary a . coarbitrary b instance Arbitrary Word8 where arbitrary = choose (97, 105) coarbitrary c = variant (fromIntegral ((fromIntegral c) `rem` 4)) instance Arbitrary Int64 where arbitrary = sized $ \n -> choose (-fromIntegral n,fromIntegral n) coarbitrary n = variant (fromIntegral (if n >= 0 then 2*n else 2*(-n) + 1)) instance Arbitrary a => Arbitrary (Maybe a) where arbitrary = do a <- arbitrary ; elements [Nothing, Just a] coarbitrary Nothing = variant 0 coarbitrary _ = variant 1 -- ok? instance Arbitrary a => Arbitrary (MaybeS a) where arbitrary = do a <- arbitrary ; elements [NothingS, JustS a] coarbitrary NothingS = variant 0 coarbitrary _ = variant 1 -- ok? {- instance Arbitrary Char where arbitrary = choose ('\0', '\255') -- since we have to test words, unlines too coarbitrary c = variant (ord c `rem` 16) instance Arbitrary Word8 where arbitrary = choose (minBound, maxBound) coarbitrary c = variant (fromIntegral ((fromIntegral c) `rem` 16)) -} instance Random Word8 where randomR = integralRandomR random = randomR (minBound,maxBound) instance Random Int64 where randomR = integralRandomR random = randomR (minBound,maxBound) integralRandomR :: (Integral a, RandomGen g) => (a,a) -> g -> (a,g) integralRandomR (a,b) g = case randomR (fromIntegral a :: Integer, fromIntegral b :: Integer) g of (x,g) -> (fromIntegral x, g) instance Arbitrary L.ByteString where arbitrary = arbitrary >>= return . L.LPS . filter (not. P.null) -- maintain the invariant. coarbitrary s = coarbitrary (L.unpack s) instance Arbitrary P.ByteString where arbitrary = P.pack `fmap` arbitrary coarbitrary s = coarbitrary (P.unpack s) instance Functor ((->) r) where fmap = (.) instance Monad ((->) r) where return = const f >>= k = \ r -> k (f r) r instance Functor ((,) a) where fmap f (x,y) = (x, f y) ------------------------------------------------------------------------ -- -- We're doing two forms of testing here. Firstly, model based testing. -- For our Lazy and strict bytestring types, we have model types: -- -- i.e. Lazy == Byte -- \\ // -- List -- -- That is, the Lazy type can be modeled by functions in both the Byte -- and List type. For each of the 3 models, we have a set of tests that -- check those types match. -- -- The Model class connects a type and its model type, via a conversion -- function. -- -- class Model a b where model :: a -> b -- get the abstract vale from a concrete value -- -- Connecting our Lazy and Strict types to their models. We also check -- the data invariant on Lazy types. -- -- These instances represent the arrows in the above diagram -- instance Model B P where model = abstr . checkInvariant instance Model P [W] where model = P.unpack instance Model P [Char] where model = PC.unpack instance Model B [W] where model = L.unpack . checkInvariant instance Model B [Char] where model = LC.unpack . checkInvariant -- Types are trivially modeled by themselves instance Model Bool Bool where model = id instance Model Int Int where model = id instance Model Int64 Int64 where model = id instance Model Int64 Int where model = fromIntegral instance Model Word8 Word8 where model = id instance Model Ordering Ordering where model = id -- More structured types are modeled recursively, using the NatTrans class from Gofer. class (Functor f, Functor g) => NatTrans f g where eta :: f a -> g a -- The transformation of the same type is identity instance NatTrans [] [] where eta = id instance NatTrans Maybe Maybe where eta = id instance NatTrans ((->) X) ((->) X) where eta = id instance NatTrans ((->) W) ((->) W) where eta = id -- We have a transformation of pairs, if the pairs are in Model instance Model f g => NatTrans ((,) f) ((,) g) where eta (f,a) = (model f, a) -- And finally, we can take any (m a) to (n b), if we can Model m n, and a b instance (NatTrans m n, Model a b) => Model (m a) (n b) where model x = fmap model (eta x) ------------------------------------------------------------------------ -- In a form more useful for QC testing (and it's lazy) checkInvariant :: L.ByteString -> L.ByteString checkInvariant (L.LPS lps) = L.LPS (check lps) where check [] = [] check (x:xs) | P.null x = error ("invariant violation: " ++ show lps) | otherwise = x : check xs abstr :: L.ByteString -> P.ByteString abstr (L.LPS []) = P.empty abstr (L.LPS xs) = P.concat xs -- Some short hand. type X = Int type W = Word8 type P = P.ByteString type B = L.ByteString ------------------------------------------------------------------------ -- -- These comparison functions handle wrapping and equality. -- -- A single class for these would be nice, but note that they differe in -- the number of arguments, and those argument types, so we'd need HList -- tricks. See here: http://okmij.org/ftp/Haskell/vararg-fn.lhs -- eq1 f g = \a -> model (f a) == g (model a) eq2 f g = \a b -> model (f a b) == g (model a) (model b) eq3 f g = \a b c -> model (f a b c) == g (model a) (model b) (model c) eq4 f g = \a b c d -> model (f a b c d) == g (model a) (model b) (model c) (model d) eq5 f g = \a b c d e -> model (f a b c d e) == g (model a) (model b) (model c) (model d) (model e) -- -- And for functions that take non-null input -- eqnotnull1 f g = \x -> (not (isNull x)) ==> eq1 f g x eqnotnull2 f g = \x y -> (not (isNull y)) ==> eq2 f g x y eqnotnull3 f g = \x y z -> (not (isNull z)) ==> eq3 f g x y z class IsNull t where isNull :: t -> Bool instance IsNull L.ByteString where isNull = L.null instance IsNull P.ByteString where isNull = P.null