module Numeric (floatToDigits) where import Expt -- -- Based on "Printing Floating-Point Numbers Quickly and Accurately" -- by R.G. Burger and R. K. Dybvig, in PLDI 96. -- The version here uses a much slower logarithm estimator. -- It should be improved. -- This function returns a non-empty list of digits (Ints in [0..base-1]) -- and an exponent. In general, if -- floatToDigits r = ([a, b, ... z], e) -- then -- r = 0.ab..z * base^e -- floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int) floatToDigits _ 0 = ([], 0) floatToDigits base x = let (f0, e0) = decodeFloat x (minExp0, _) = floatRange x p = floatDigits x b = floatRadix x minExp = minExp0 - p -- the real minimum exponent -- Haskell requires that f be adjusted so denormalized numbers -- will have an impossibly low exponent. Adjust for this. f :: Integer e :: Int (f, e) = let n = minExp - e0 in if n > 0 then (f0 `div` (b^n), e0+n) else (f0, e0) (r, s, mUp, mDn) = if e >= 0 then let be = b^e in if f == b^(p-1) then (f*be*b*2, 2*b, be*b, b) else (f*be*2, 2, be, be) else if e > minExp && f == b^(p-1) then (f*b*2, b^(-e+1)*2, b, 1) else (f*2, b^(-e)*2, 1, 1) k = let k0 = if b==2 && base==10 then -- logBase 10 2 is slightly bigger than 3/10 so -- the following will err on the low side. Ignoring -- the fraction will make it err even more. -- Haskell promises that p-1 <= logBase b f < p. (p - 1 + e0) * 3 `div` 10 else ceiling ((log (fromInteger (f+1)) + fromIntegral e * log (fromInteger b)) / log (fromInteger base)) fixup n = if n >= 0 then if r + mUp <= expt base n * s then n else fixup (n+1) else if expt base (-n) * (r + mUp) <= s then n else fixup (n+1) in fixup k0 gen ds rn sN mUpN mDnN = let (dn, rn') = (rn * base) `divMod` sN mUpN' = mUpN * base mDnN' = mDnN * base in case (rn' < mDnN', rn' + mUpN' > sN) of (True, False) -> dn : ds (False, True) -> dn+1 : ds (True, True) -> if rn' * 2 < sN then dn : ds else dn+1 : ds (False, False) -> gen (dn:ds) rn' sN mUpN' mDnN' rds = if k >= 0 then gen [] r (s * expt base k) mUp mDn else let bk = expt base (-k) in gen [] (r * bk) s (mUp * bk) (mDn * bk) in (map fromIntegral (reverse rds), k)