(\x.x) \x.\y.x (x x (\f.\g.\x.(g(f(x)))) (\x. x x) (\x.x) (\x.x) (\id. id id) (\x.x) let id = \x.x in id id \x. let f = x in f f fix (\x.x) fix unit \x. unit (unit x) fix (\x. append (unit x)) \x. fix (\xs. append (unit x) xs) let id = \x.x in id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id