1. FTS3 Tokenizers When creating a new full-text table, FTS3 allows the user to select the text tokenizer implementation to be used when indexing text by specifying a "tokenizer" clause as part of the CREATE VIRTUAL TABLE statement: CREATE VIRTUAL TABLE USING fts3( [, tokenizer []] ); The built-in tokenizers (valid values to pass as ) are "simple" and "porter". should consist of zero or more white-space separated arguments to pass to the selected tokenizer implementation. The interpretation of the arguments, if any, depends on the individual tokenizer. 2. Custom Tokenizers FTS3 allows users to provide custom tokenizer implementations. The interface used to create a new tokenizer is defined and described in the fts3_tokenizer.h source file. Registering a new FTS3 tokenizer is similar to registering a new virtual table module with SQLite. The user passes a pointer to a structure containing pointers to various callback functions that make up the implementation of the new tokenizer type. For tokenizers, the structure (defined in fts3_tokenizer.h) is called "sqlite3_tokenizer_module". FTS3 does not expose a C-function that users call to register new tokenizer types with a database handle. Instead, the pointer must be encoded as an SQL blob value and passed to FTS3 through the SQL engine by evaluating a special scalar function, "fts3_tokenizer()". The fts3_tokenizer() function may be called with one or two arguments, as follows: SELECT fts3_tokenizer(); SELECT fts3_tokenizer(, ); Where is a string identifying the tokenizer and is a pointer to an sqlite3_tokenizer_module structure encoded as an SQL blob. If the second argument is present, it is registered as tokenizer and a copy of it returned. If only one argument is passed, a pointer to the tokenizer implementation currently registered as is returned, encoded as a blob. Or, if no such tokenizer exists, an SQL exception (error) is raised. SECURITY: If the fts3 extension is used in an environment where potentially malicious users may execute arbitrary SQL (i.e. gears), they should be prevented from invoking the fts3_tokenizer() function, possibly using the authorisation callback. See "Sample code" below for an example of calling the fts3_tokenizer() function from C code. 3. ICU Library Tokenizers If this extension is compiled with the SQLITE_ENABLE_ICU pre-processor symbol defined, then there exists a built-in tokenizer named "icu" implemented using the ICU library. The first argument passed to the xCreate() method (see fts3_tokenizer.h) of this tokenizer may be an ICU locale identifier. For example "tr_TR" for Turkish as used in Turkey, or "en_AU" for English as used in Australia. For example: "CREATE VIRTUAL TABLE thai_text USING fts3(text, tokenizer icu th_TH)" The ICU tokenizer implementation is very simple. It splits the input text according to the ICU rules for finding word boundaries and discards any tokens that consist entirely of white-space. This may be suitable for some applications in some locales, but not all. If more complex processing is required, for example to implement stemming or discard punctuation, this can be done by creating a tokenizer implementation that uses the ICU tokenizer as part of its implementation. When using the ICU tokenizer this way, it is safe to overwrite the contents of the strings returned by the xNext() method (see fts3_tokenizer.h). 4. Sample code. The following two code samples illustrate the way C code should invoke the fts3_tokenizer() scalar function: int registerTokenizer( sqlite3 *db, char *zName, const sqlite3_tokenizer_module *p ){ int rc; sqlite3_stmt *pStmt; const char zSql[] = "SELECT fts3_tokenizer(?, ?)"; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ return rc; } sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC); sqlite3_step(pStmt); return sqlite3_finalize(pStmt); } int queryTokenizer( sqlite3 *db, char *zName, const sqlite3_tokenizer_module **pp ){ int rc; sqlite3_stmt *pStmt; const char zSql[] = "SELECT fts3_tokenizer(?)"; *pp = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ return rc; } sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); if( SQLITE_ROW==sqlite3_step(pStmt) ){ if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){ memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp)); } } return sqlite3_finalize(pStmt); }