.\" Automatically generated by Pod::Man v1.34, Pod::Parser v1.13 .\" .\" Standard preamble: .\" ======================================================================== .de Sh \" Subsection heading .br .if t .Sp .ne 5 .PP \fB\\$1\fR .PP .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. | will give a .\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to .\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C' .\" expand to `' in nroff, nothing in troff, for use with C<>. .tr \(*W-|\(bv\*(Tr .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' 'br\} .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . nr % 0 . rr F .\} .\" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .hy 0 .if n .na .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Benchmark 3" .TH Benchmark 3 "2002-11-24" "perl v5.8.0" "Perl Programmers Reference Guide" .SH "NAME" Benchmark \- benchmark running times of Perl code .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& use Benchmark qw(:all) ; .Ve .PP .Vb 1 \& timethis ($count, "code"); .Ve .PP .Vb 5 \& # Use Perl code in strings... \& timethese($count, { \& 'Name1' => '...code1...', \& 'Name2' => '...code2...', \& }); .Ve .PP .Vb 5 \& # ... or use subroutine references. \& timethese($count, { \& 'Name1' => sub { ...code1... }, \& 'Name2' => sub { ...code2... }, \& }); .Ve .PP .Vb 5 \& # cmpthese can be used both ways as well \& cmpthese($count, { \& 'Name1' => '...code1...', \& 'Name2' => '...code2...', \& }); .Ve .PP .Vb 4 \& cmpthese($count, { \& 'Name1' => sub { ...code1... }, \& 'Name2' => sub { ...code2... }, \& }); .Ve .PP .Vb 9 \& # ...or in two stages \& $results = timethese($count, \& { \& 'Name1' => sub { ...code1... }, \& 'Name2' => sub { ...code2... }, \& }, \& 'none' \& ); \& cmpthese( $results ) ; .Ve .PP .Vb 2 \& $t = timeit($count, '...other code...') \& print "$count loops of other code took:",timestr($t),"\en"; .Ve .PP .Vb 3 \& $t = countit($time, '...other code...') \& $count = $t->iters ; \& print "$count loops of other code took:",timestr($t),"\en"; .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" The Benchmark module encapsulates a number of routines to help you figure out how long it takes to execute some code. .PP timethis \- run a chunk of code several times .PP timethese \- run several chunks of code several times .PP cmpthese \- print results of timethese as a comparison chart .PP timeit \- run a chunk of code and see how long it goes .PP countit \- see how many times a chunk of code runs in a given time .Sh "Methods" .IX Subsection "Methods" .IP "new" 10 .IX Item "new" Returns the current time. Example: .Sp .Vb 6 \& use Benchmark; \& $t0 = new Benchmark; \& # ... your code here ... \& $t1 = new Benchmark; \& $td = timediff($t1, $t0); \& print "the code took:",timestr($td),"\en"; .Ve .IP "debug" 10 .IX Item "debug" Enables or disable debugging by setting the \f(CW$Benchmark::Debug\fR flag: .Sp .Vb 3 \& debug Benchmark 1; \& $t = timeit(10, ' 5 ** $Global '); \& debug Benchmark 0; .Ve .IP "iters" 10 .IX Item "iters" Returns the number of iterations. .Sh "Standard Exports" .IX Subsection "Standard Exports" The following routines will be exported into your namespace if you use the Benchmark module: .IP "timeit(\s-1COUNT\s0, \s-1CODE\s0)" 10 .IX Item "timeit(COUNT, CODE)" Arguments: \s-1COUNT\s0 is the number of times to run the loop, and \s-1CODE\s0 is the code to run. \s-1CODE\s0 may be either a code reference or a string to be eval'd; either way it will be run in the caller's package. .Sp Returns: a Benchmark object. .IP "timethis ( \s-1COUNT\s0, \s-1CODE\s0, [ \s-1TITLE\s0, [ \s-1STYLE\s0 ]] )" 10 .IX Item "timethis ( COUNT, CODE, [ TITLE, [ STYLE ]] )" Time \s-1COUNT\s0 iterations of \s-1CODE\s0. \s-1CODE\s0 may be a string to eval or a code reference; either way the \s-1CODE\s0 will run in the caller's package. Results will be printed to \s-1STDOUT\s0 as \s-1TITLE\s0 followed by the times. \&\s-1TITLE\s0 defaults to \*(L"timethis \s-1COUNT\s0\*(R" if none is provided. \s-1STYLE\s0 determines the format of the output, as described for \fItimestr()\fR below. .Sp The \s-1COUNT\s0 can be zero or negative: this means the \fIminimum number of \&\s-1CPU\s0 seconds\fR to run. A zero signifies the default of 3 seconds. For example to run at least for 10 seconds: .Sp .Vb 1 \& timethis(-10, $code) .Ve .Sp or to run two pieces of code tests for at least 3 seconds: .Sp .Vb 1 \& timethese(0, { test1 => '...', test2 => '...'}) .Ve .Sp \&\s-1CPU\s0 seconds is, in \s-1UNIX\s0 terms, the user time plus the system time of the process itself, as opposed to the real (wallclock) time and the time spent by the child processes. Less than 0.1 seconds is not accepted (\-0.01 as the count, for example, will cause a fatal runtime exception). .Sp Note that the \s-1CPU\s0 seconds is the \fBminimum\fR time: \s-1CPU\s0 scheduling and other operating system factors may complicate the attempt so that a little bit more time is spent. The benchmark output will, however, also tell the number of \f(CW$code\fR runs/second, which should be a more interesting number than the actually spent seconds. .Sp Returns a Benchmark object. .IP "timethese ( \s-1COUNT\s0, \s-1CODEHASHREF\s0, [ \s-1STYLE\s0 ] )" 10 .IX Item "timethese ( COUNT, CODEHASHREF, [ STYLE ] )" The \s-1CODEHASHREF\s0 is a reference to a hash containing names as keys and either a string to eval or a code reference for each value. For each (\s-1KEY\s0, \s-1VALUE\s0) pair in the \s-1CODEHASHREF\s0, this routine will call .Sp .Vb 1 \& timethis(COUNT, VALUE, KEY, STYLE) .Ve .Sp The routines are called in string comparison order of \s-1KEY\s0. .Sp The \s-1COUNT\s0 can be zero or negative, see \fItimethis()\fR. .Sp Returns a hash of Benchmark objects, keyed by name. .IP "timediff ( T1, T2 )" 10 .IX Item "timediff ( T1, T2 )" Returns the difference between two Benchmark times as a Benchmark object suitable for passing to \fItimestr()\fR. .IP "timestr ( \s-1TIMEDIFF\s0, [ \s-1STYLE\s0, [ \s-1FORMAT\s0 ] ] )" 10 .IX Item "timestr ( TIMEDIFF, [ STYLE, [ FORMAT ] ] )" Returns a string that formats the times in the \s-1TIMEDIFF\s0 object in the requested \s-1STYLE\s0. \s-1TIMEDIFF\s0 is expected to be a Benchmark object similar to that returned by \fItimediff()\fR. .Sp \&\s-1STYLE\s0 can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows each of the 5 times available ('wallclock' time, user time, system time, user time of children, and system time of children). 'noc' shows all except the two children times. 'nop' shows only wallclock and the two children times. 'auto' (the default) will act as 'all' unless the children times are both zero, in which case it acts as 'noc'. \&'none' prevents output. .Sp \&\s-1FORMAT\s0 is the \fIprintf\fR\|(3)\-style format specifier (without the leading '%') to use to print the times. It defaults to '5.2f'. .Sh "Optional Exports" .IX Subsection "Optional Exports" The following routines will be exported into your namespace if you specifically ask that they be imported: .IP "clearcache ( \s-1COUNT\s0 )" 10 .IX Item "clearcache ( COUNT )" Clear the cached time for \s-1COUNT\s0 rounds of the null loop. .IP "clearallcache ( )" 10 .IX Item "clearallcache ( )" Clear all cached times. .IP "cmpthese ( \s-1COUT\s0, \s-1CODEHASHREF\s0, [ \s-1STYLE\s0 ] )" 10 .IX Item "cmpthese ( COUT, CODEHASHREF, [ STYLE ] )" .PD 0 .IP "cmpthese ( \s-1RESULTSHASHREF\s0, [ \s-1STYLE\s0 ] )" 10 .IX Item "cmpthese ( RESULTSHASHREF, [ STYLE ] )" .PD Optionally calls \fItimethese()\fR, then outputs comparison chart. This: .Sp .Vb 1 \& cmpthese( -1, { a => "++\e$i", b => "\e$i *= 2" } ) ; .Ve .Sp outputs a chart like: .Sp .Vb 3 \& Rate b a \& b 2831802/s -- -61% \& a 7208959/s 155% -- .Ve .Sp This chart is sorted from slowest to fastest, and shows the percent speed difference between each pair of tests. .Sp c can also be passed the data structure that \fItimethese()\fR returns: .Sp .Vb 2 \& $results = timethese( -1, { a => "++\e$i", b => "\e$i *= 2" } ) ; \& cmpthese( $results ); .Ve .Sp in case you want to see both sets of results. .Sp Returns a reference to an \s-1ARRAY\s0 of rows, each row is an \s-1ARRAY\s0 of cells from the above chart, including labels. This: .Sp .Vb 1 \& my $rows = cmpthese( -1, { a => '++$i', b => '$i *= 2' }, "none" ); .Ve .Sp returns a data structure like: .Sp .Vb 5 \& [ \& [ '', 'Rate', 'b', 'a' ], \& [ 'b', '2885232/s', '--', '-59%' ], \& [ 'a', '7099126/s', '146%', '--' ], \& ] .Ve .Sp \&\fB\s-1NOTE\s0\fR: This result value differs from previous versions, which returned the \f(CW\*(C`timethese()\*(C'\fR result structure. If you want that, just use the two statement \f(CW\*(C`timethese\*(C'\fR...\f(CW\*(C`cmpthese\*(C'\fR idiom shown above. .Sp Incidently, note the variance in the result values between the two examples; this is typical of benchmarking. If this were a real benchmark, you would probably want to run a lot more iterations. .IP "countit(\s-1TIME\s0, \s-1CODE\s0)" 10 .IX Item "countit(TIME, CODE)" Arguments: \s-1TIME\s0 is the minimum length of time to run \s-1CODE\s0 for, and \s-1CODE\s0 is the code to run. \s-1CODE\s0 may be either a code reference or a string to be eval'd; either way it will be run in the caller's package. .Sp \&\s-1TIME\s0 is \fInot\fR negative. \fIcountit()\fR will run the loop many times to calculate the speed of \s-1CODE\s0 before running it for \s-1TIME\s0. The actual time run for will usually be greater than \s-1TIME\s0 due to system clock resolution, so it's best to look at the number of iterations divided by the times that you are concerned with, not just the iterations. .Sp Returns: a Benchmark object. .IP "disablecache ( )" 10 .IX Item "disablecache ( )" Disable caching of timings for the null loop. This will force Benchmark to recalculate these timings for each new piece of code timed. .IP "enablecache ( )" 10 .IX Item "enablecache ( )" Enable caching of timings for the null loop. The time taken for \s-1COUNT\s0 rounds of the null loop will be calculated only once for each different \s-1COUNT\s0 used. .IP "timesum ( T1, T2 )" 10 .IX Item "timesum ( T1, T2 )" Returns the sum of two Benchmark times as a Benchmark object suitable for passing to \fItimestr()\fR. .SH "NOTES" .IX Header "NOTES" The data is stored as a list of values from the time and times functions: .PP .Vb 1 \& ($real, $user, $system, $children_user, $children_system, $iters) .Ve .PP in seconds for the whole loop (not divided by the number of rounds). .PP The timing is done using \fItime\fR\|(3) and \fItimes\fR\|(3). .PP Code is executed in the caller's package. .PP The time of the null loop (a loop with the same number of rounds but empty loop body) is subtracted from the time of the real loop. .PP The null loop times can be cached, the key being the number of rounds. The caching can be controlled using calls like these: .PP .Vb 2 \& clearcache($key); \& clearallcache(); .Ve .PP .Vb 2 \& disablecache(); \& enablecache(); .Ve .PP Caching is off by default, as it can (usually slightly) decrease accuracy and does not usually noticably affect runtimes. .SH "EXAMPLES" .IX Header "EXAMPLES" For example, .PP .Vb 6 \& use Benchmark qw( cmpthese ) ; \& $x = 3; \& cmpthese( -5, { \& a => sub{$x*$x}, \& b => sub{$x**2}, \& } ); .Ve .PP outputs something like this: .PP .Vb 4 \& Benchmark: running a, b, each for at least 5 CPU seconds... \& Rate b a \& b 1559428/s -- -62% \& a 4152037/s 166% -- .Ve .PP while .PP .Vb 7 \& use Benchmark qw( timethese cmpthese ) ; \& $x = 3; \& $r = timethese( -5, { \& a => sub{$x*$x}, \& b => sub{$x**2}, \& } ); \& cmpthese $r; .Ve .PP outputs something like this: .PP .Vb 6 \& Benchmark: running a, b, each for at least 5 CPU seconds... \& a: 10 wallclock secs ( 5.14 usr + 0.13 sys = 5.27 CPU) @ 3835055.60/s (n=20210743) \& b: 5 wallclock secs ( 5.41 usr + 0.00 sys = 5.41 CPU) @ 1574944.92/s (n=8520452) \& Rate b a \& b 1574945/s -- -59% \& a 3835056/s 144% -- .Ve .SH "INHERITANCE" .IX Header "INHERITANCE" Benchmark inherits from no other class, except of course for Exporter. .SH "CAVEATS" .IX Header "CAVEATS" Comparing eval'd strings with code references will give you inaccurate results: a code reference will show a slightly slower execution time than the equivalent eval'd string. .PP The real time timing is done using \fItime\fR\|(2) and the granularity is therefore only one second. .PP Short tests may produce negative figures because perl can appear to take longer to execute the empty loop than a short test; try: .PP .Vb 1 \& timethis(100,'1'); .Ve .PP The system time of the null loop might be slightly more than the system time of the loop with the actual code and therefore the difference might end up being < 0. .SH "SEE ALSO" .IX Header "SEE ALSO" Devel::DProf \- a Perl code profiler .SH "AUTHORS" .IX Header "AUTHORS" Jarkko Hietaniemi <\fIjhi@iki.fi\fR>, Tim Bunce <\fITim.Bunce@ig.co.uk\fR> .SH "MODIFICATION HISTORY" .IX Header "MODIFICATION HISTORY" September 8th, 1994; by Tim Bunce. .PP March 28th, 1997; by Hugo van der Sanden: added support for code references and the already documented 'debug' method; revamped documentation. .PP April 04\-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time functionality. .PP September, 1999; by Barrie Slaymaker: math fixes and accuracy and efficiency tweaks. Added \fIcmpthese()\fR. A result is now returned from \&\fItimethese()\fR. Exposed \fIcountit()\fR (was \fIrunfor()\fR). .PP December, 2001; by Nicholas Clark: make \fItimestr()\fR recognise the style 'none' and return an empty string. If cmpthese is calling timethese, make it pass the style in. (so that 'none' will suppress output). Make sub new dump its debugging output to \s-1STDERR\s0, to be consistent with everything else. All bugs found while writing a regression test.