#!./perl # # Regression tests for the Math::Trig package # # The tests are quite modest as the Math::Complex tests exercise # these quite vigorously. # # -- Jarkko Hietaniemi, April 1997 BEGIN { chdir 't' if -d 't'; @INC = '../lib'; } use Math::Trig; use strict; use vars qw($x $y $z); my $eps = 1e-11; if ($^O eq 'unicos') { # See lib/Math/Complex.pm and t/lib/complex.t. $eps = 1e-10; } sub near ($$;$) { my $e = defined $_[2] ? $_[2] : $eps; $_[1] ? (abs($_[0]/$_[1] - 1) < $e) : abs($_[0]) < $e; } print "1..26\n"; $x = 0.9; print 'not ' unless (near(tan($x), sin($x) / cos($x))); print "ok 1\n"; print 'not ' unless (near(sinh(2), 3.62686040784702)); print "ok 2\n"; print 'not ' unless (near(acsch(0.1), 2.99822295029797)); print "ok 3\n"; $x = asin(2); print 'not ' unless (ref $x eq 'Math::Complex'); print "ok 4\n"; # avoid using Math::Complex here $x =~ /^([^-]+)(-[^i]+)i$/; ($y, $z) = ($1, $2); print 'not ' unless (near($y, 1.5707963267949) and near($z, -1.31695789692482)); print "ok 5\n"; print 'not ' unless (near(deg2rad(90), pi/2)); print "ok 6\n"; print 'not ' unless (near(rad2deg(pi), 180)); print "ok 7\n"; use Math::Trig ':radial'; { my ($r,$t,$z) = cartesian_to_cylindrical(1,1,1); print 'not ' unless (near($r, sqrt(2))) and (near($t, deg2rad(45))) and (near($z, 1)); print "ok 8\n"; ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z); print 'not ' unless (near($x, 1)) and (near($y, 1)) and (near($z, 1)); print "ok 9\n"; ($r,$t,$z) = cartesian_to_cylindrical(1,1,0); print 'not ' unless (near($r, sqrt(2))) and (near($t, deg2rad(45))) and (near($z, 0)); print "ok 10\n"; ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z); print 'not ' unless (near($x, 1)) and (near($y, 1)) and (near($z, 0)); print "ok 11\n"; } { my ($r,$t,$f) = cartesian_to_spherical(1,1,1); print 'not ' unless (near($r, sqrt(3))) and (near($t, deg2rad(45))) and (near($f, atan2(sqrt(2), 1))); print "ok 12\n"; ($x,$y,$z) = spherical_to_cartesian($r, $t, $f); print 'not ' unless (near($x, 1)) and (near($y, 1)) and (near($z, 1)); print "ok 13\n"; ($r,$t,$f) = cartesian_to_spherical(1,1,0); print 'not ' unless (near($r, sqrt(2))) and (near($t, deg2rad(45))) and (near($f, deg2rad(90))); print "ok 14\n"; ($x,$y,$z) = spherical_to_cartesian($r, $t, $f); print 'not ' unless (near($x, 1)) and (near($y, 1)) and (near($z, 0)); print "ok 15\n"; } { my ($r,$t,$z) = cylindrical_to_spherical(spherical_to_cylindrical(1,1,1)); print 'not ' unless (near($r, 1)) and (near($t, 1)) and (near($z, 1)); print "ok 16\n"; ($r,$t,$z) = spherical_to_cylindrical(cylindrical_to_spherical(1,1,1)); print 'not ' unless (near($r, 1)) and (near($t, 1)) and (near($z, 1)); print "ok 17\n"; } { use Math::Trig 'great_circle_distance'; print 'not ' unless (near(great_circle_distance(0, 0, 0, pi/2), pi/2)); print "ok 18\n"; print 'not ' unless (near(great_circle_distance(0, 0, pi, pi), pi)); print "ok 19\n"; # London to Tokyo. my @L = (deg2rad(-0.5), deg2rad(90 - 51.3)); my @T = (deg2rad(139.8),deg2rad(90 - 35.7)); my $km = great_circle_distance(@L, @T, 6378); print 'not ' unless (near($km, 9605.26637021388)); print "ok 20\n"; } { my $R2D = 57.295779513082320876798154814169; sub frac { $_[0] - int($_[0]) } my $lotta_radians = deg2rad(1E+20, 1); print "not " unless near($lotta_radians, 1E+20/$R2D); print "ok 21\n"; my $negat_degrees = rad2deg(-1E20, 1); print "not " unless near($negat_degrees, -1E+20*$R2D); print "ok 22\n"; my $posit_degrees = rad2deg(-10000, 1); print "not " unless near($posit_degrees, -10000*$R2D); print "ok 23\n"; } { use Math::Trig 'great_circle_direction'; print 'not ' unless (near(great_circle_direction(0, 0, 0, pi/2), pi)); print "ok 24\n"; # Retired test: Relies on atan(0, 0), which is not portable. # print 'not ' # unless (near(great_circle_direction(0, 0, pi, pi), -pi()/2)); print "ok 25\n"; # London to Tokyo. my @L = (deg2rad(-0.5), deg2rad(90 - 51.3)); my @T = (deg2rad(139.8),deg2rad(90 - 35.7)); my $rad = great_circle_direction(@L, @T); print 'not ' unless (near($rad, -0.546644569997376)); print "ok 26\n"; } # eof