#!./perl # # test recursive functions. # BEGIN { chdir 't' if -d 't'; @INC = qw(. ../lib); require "test.pl"; plan(tests => 26); } use strict; sub gcd { return gcd($_[0] - $_[1], $_[1]) if ($_[0] > $_[1]); return gcd($_[0], $_[1] - $_[0]) if ($_[0] < $_[1]); $_[0]; } sub factorial { $_[0] < 2 ? 1 : $_[0] * factorial($_[0] - 1); } sub fibonacci { $_[0] < 2 ? 1 : fibonacci($_[0] - 2) + fibonacci($_[0] - 1); } # Highly recursive, highly aggressive. # Kids, don't try this at home. # # For example ackermann(4,1) will take quite a long time. # It will simply eat away your memory. Trust me. sub ackermann { return $_[1] + 1 if ($_[0] == 0); return ackermann($_[0] - 1, 1) if ($_[1] == 0); ackermann($_[0] - 1, ackermann($_[0], $_[1] - 1)); } # Highly recursive, highly boring. sub takeuchi { $_[1] < $_[0] ? takeuchi(takeuchi($_[0] - 1, $_[1], $_[2]), takeuchi($_[1] - 1, $_[2], $_[0]), takeuchi($_[2] - 1, $_[0], $_[1])) : $_[2]; } is(gcd(1147, 1271), 31, "gcd(1147, 1271) == 31"); is(gcd(1908, 2016), 36, "gcd(1908, 2016) == 36"); is(factorial(10), 3628800, "factorial(10) == 3628800"); is(factorial(factorial(3)), 720, "factorial(factorial(3)) == 720"); is(fibonacci(10), 89, "fibonacci(10) == 89"); is(fibonacci(fibonacci(7)), 17711, "fibonacci(fibonacci(7)) == 17711"); my @ack = qw(1 2 3 4 2 3 4 5 3 5 7 9 5 13 29 61); for my $x (0..3) { for my $y (0..3) { my $a = ackermann($x, $y); is($a, shift(@ack), "ackermann($x, $y) == $a"); } } my ($x, $y, $z) = (18, 12, 6); is(takeuchi($x, $y, $z), $z + 1, "takeuchi($x, $y, $z) == $z + 1"); { sub get_first1 { get_list1(@_)->[0]; } sub get_list1 { return [curr_test] unless $_[0]; my $u = get_first1(0); [$u]; } my $x = get_first1(1); ok($x, "premature FREETMPS (change 5699)"); } { sub get_first2 { return get_list2(@_)->[0]; } sub get_list2 { return [curr_test] unless $_[0]; my $u = get_first2(0); return [$u]; } my $x = get_first2(1); ok($x, "premature FREETMPS (change 5699)"); } { local $^W = 0; # We do not need recursion depth warning. sub sillysum { return $_[0] + ($_[0] > 0 ? sillysum($_[0] - 1) : 0); } is(sillysum(1000), 1000*1001/2, "recursive sum of 1..1000"); }