
ARM9E-S Core™

Revision: r2p1

Technical Reference Manual
Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved.
ARM DDI 0240B

ARM9E-S Core
Technical Reference Manual

Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Figure B-2 on page B-4 reprinted with permission IEEE Std 1149.1-1990, IEEE Standard Test Access Port
and Boundary-Scan Architecture Copyright 2001, by IEEE. The IEEE disclaims any responsibility or liability
resulting from the placement and use in the described manner.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Change

02 May 2002 A First release

30 July 2004 B Second release for r2p1
ii Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Contents
ARM9E-S Core Technical Reference Manual

Preface
About this manual .. xvi
Feedback .. xx

Chapter 1 Introduction
1.1 About the ARM9E-S core .. 1-2
1.2 ARM9E-S architecture .. 1-5
1.3 ARM9E-S block, core, and interface diagrams ... 1-7
1.4 ARM9E-S instruction set summary ... 1-11
1.5 Silicon revision information ... 1-24

Chapter 2 Programmer’s Model
2.1 About the programmer’s model ... 2-2
2.2 Processor operating states ... 2-3
2.3 Memory formats .. 2-4
2.4 Instruction length ... 2-6
2.5 Data types ... 2-7
2.6 Operating modes .. 2-8
2.7 Registers ... 2-9
2.8 The program status registers .. 2-15
2.9 Exceptions .. 2-19
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. iii

Contents
Chapter 3 Memory Interface
3.1 About the memory interface ... 3-2
3.2 Instruction interface .. 3-3
3.3 Instruction interface addressing signals ... 3-4
3.4 Instruction interface data timed signals .. 3-6
3.5 Endian effects for instruction fetches .. 3-7
3.6 Instruction interface cycle types .. 3-8
3.7 Data interface ... 3-15
3.8 Data interface addressing signals .. 3-17
3.9 Data interface data timed signals ... 3-20
3.10 Data interface cycle types .. 3-25
3.11 Endian effects for data transfers ... 3-34
3.12 Use of CLKEN to control bus cycles ... 3-35

Chapter 4 Interrupts
4.1 About interrupts .. 4-2
4.2 Hardware interface ... 4-3
4.3 Maximum interrupt latency ... 4-6
4.4 Minimum interrupt latency .. 4-7

Chapter 5 Coprocessor Interface
5.1 About the coprocessor interface ... 5-2
5.2 LDC/STC .. 5-4
5.3 MCR/MRC .. 5-8
5.4 MCRR/MRRC ... 5-9
5.5 Interlocked MCR ... 5-10
5.6 Interlocked MCRR .. 5-11
5.7 CDP .. 5-12
5.8 Privileged instructions ... 5-14
5.9 Busy-waiting and interrupts .. 5-15
5.10 Coprocessor 15 MCRs ... 5-16
5.11 Connecting coprocessors ... 5-17

Chapter 6 Device Reset
6.1 About device reset .. 6-2
6.2 Reset modes .. 6-3
6.3 ARM9E-S core behavior on exit from reset .. 6-5

Chapter 7 Instruction Cycle Times
7.1 Instruction cycle count summary .. 7-3
7.2 Introduction to detailed instruction cycle timings .. 7-7
7.3 Branch and ARM branch with link .. 7-8
7.4 Thumb branch with link ... 7-9
7.5 Branch and exchange ... 7-10
7.6 Thumb Branch, Link, and Exchange <immediate> 7-11
7.7 Data operations .. 7-12
iv Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Contents
7.8 MRS operations .. 7-14
7.9 MSR operations .. 7-15
7.10 Multiply and multiply accumulate .. 7-16
7.11 QADD, QDADD, QSUB, and QDSUB ... 7-20
7.12 Load register ... 7-21
7.13 Store register .. 7-26
7.14 Load multiple registers .. 7-27
7.15 Store multiple registers ... 7-30
7.16 Load double register ... 7-31
7.17 Store double register ... 7-32
7.18 Data swap ... 7-33
7.19 PLD ... 7-35
7.20 Software interrupt, undefined instruction, and exception entry 7-36
7.21 Coprocessor data processing operation ... 7-37
7.22 Load coprocessor register, from memory ... 7-38
7.23 Store coprocessor register, to memory ... 7-40
7.24 Coprocessor register transfer, to ARM .. 7-42
7.25 Coprocessor register transfer, from ARM register 7-43
7.26 Double coprocessor register transfer, to ARM register 7-44
7.27 Double coprocessor register transfer, from ARM register 7-45
7.28 Coprocessor absent .. 7-46
7.29 Unexecuted instructions .. 7-48

Chapter 8 Debug Interface and EmbeddedICE-RT
8.1 About the debug interface ... 8-2
8.2 Debug systems ... 8-3
8.3 About EmbeddedICE-RT .. 8-6
8.4 Disabling EmbeddedICE-RT ... 8-8
8.5 Debug interface signals .. 8-9
8.6 ARM9E-S core clock domains .. 8-15
8.7 Determining the core and system state ... 8-16
8.8 The debug communications channel .. 8-17
8.9 Monitor mode debug ... 8-22
8.10 Using watchpoints and breakpoints .. 8-24

Chapter 9 AC Parameters
9.1 Timing diagrams ... 9-2
9.2 AC timing parameter definitions .. 9-9

Appendix A Signal Descriptions
A.1 Clock interface signals .. A-2
A.2 Instruction memory interface signals ... A-3
A.3 Data memory interface signals .. A-4
A.4 Miscellaneous signals .. A-6
A.5 Coprocessor interface signals .. A-7
A.6 Debug signals .. A-8
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. v

Contents
Appendix B Debug in depth
B.1 Scan chains and JTAG interface .. B-2
B.2 Resetting the TAP controller ... B-5
B.3 Instruction register .. B-6
B.4 Public instructions ... B-7
B.5 Test data registers .. B-10
B.6 ARM9E-S core clock domains .. B-17
B.7 Determining the core and system state .. B-18
B.8 Behavior of the program counter during debug .. B-23
B.9 Priorities and exceptions .. B-26
B.10 EmbeddedICE-RT logic .. B-27
B.11 Vector catching ... B-39
B.12 Coupling breakpoints and watchpoints ... B-40
B.13 Disabling EmbeddedICE-RT .. B-43
B.14 EmbeddedICE-RT timing .. B-44

Glossary
vi Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

List of Tables
ARM9E-S Core Technical Reference Manual

Change history .. ii
Table 1-1 Key to instruction set tables .. 1-11
Table 1-2 ARM instruction set summary ... 1-12
Table 1-3 Addressing modes .. 1-16
Table 1-4 Oprnd2 .. 1-18
Table 1-5 Fields ... 1-19
Table 1-6 Condition fields .. 1-19
Table 1-7 Thumb instruction set summary .. 1-20
Table 2-1 Register mode identifiers .. 2-10
Table 2-2 PSR mode bit values ... 2-17
Table 2-3 Exception entry and exit .. 2-19
Table 2-4 Configuration of exception vector address locations ... 2-24
Table 2-5 Exception vectors .. 2-25
Table 3-1 InTRANS encoding ... 3-4
Table 3-2 Significant address bits ... 3-7
Table 3-3 Halfword accesses .. 3-7
Table 3-4 Cycle types .. 3-8
Table 3-5 Burst types .. 3-10
Table 3-6 Transfer widths .. 3-18
Table 3-7 DnTRANS encoding .. 3-19
Table 3-8 Significant address bits ... 3-22
Table 3-9 Word accesses .. 3-23
Table 3-10 Halfword accesses .. 3-23
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. vii

List of Tables
Table 3-11 Byte accesses ... 3-23
Table 3-12 Cycle types ... 3-26
Table 3-13 Burst types .. 3-28
Table 3-14 DBURST[3:0] encoding .. 3-30
Table 5-1 Handshake signals ... 5-7
Table 5-2 Handshake signal connections ... 5-18
Table 6-1 Reset modes ... 6-3
Table 7-1 Key to tables ... 7-3
Table 7-2 ARM instruction cycle counts .. 7-3
Table 7-3 Key to cycle timing tables ... 7-7
Table 7-4 Branch and ARM branch with link cycle timings ... 7-8
Table 7-5 Thumb branch with link cycle timing ... 7-9
Table 7-6 Branch and exchange cycle timing ... 7-10
Table 7-7 Thumb branch, link, and exchange cycle timing ... 7-11
Table 7-8 Data operation cycle timing .. 7-12
Table 7-9 MRS cycle timing .. 7-14
Table 7-10 MSR cycle timing .. 7-15
Table 7-11 MUL and MLA cycle timing ... 7-17
Table 7-12 MULS and MLAS cycle timing .. 7-17
Table 7-13 SMULL, UMULL, SMLAL, and UMLAL cycle timing ... 7-18
Table 7-14 SMULLS, UMULLS, SMLALS, and UMLALS cycle timing 7-18
Table 7-15 SMULxy, SMLAxy, SMULWy, and SMLAWy cycle timing 7-19
Table 7-16 SMLALxy cycle timing ... 7-19
Table 7-17 QADD, QDADD, QSUB, and QDSUB cycle timing ... 7-20
Table 7-18 Load register operation cycle timing ... 7-23
Table 7-19 Cycle timing for load operations resulting in interlocks ... 7-24
Table 7-20 Example sequence LDRB, ADD, and ADD cycle timing ... 7-25
Table 7-21 Example sequence LDRB and STMIA cycle timing .. 7-25
Table 7-22 Store register operation cycle timing .. 7-26
Table 7-23 LDM cycle timing .. 7-28
Table 7-24 STM cycle timing .. 7-30
Table 7-25 Data swap cycle timing ... 7-33
Table 7-26 PLD operation cycle timing ... 7-35
Table 7-27 Exception entry cycle timing ... 7-36
Table 7-28 Coprocessor data operation cycle timing .. 7-37
Table 7-29 Load coprocessor register cycle timing .. 7-38
Table 7-30 Store coprocessor register cycle timing .. 7-40
Table 7-31 MRC instruction cycle timing .. 7-42
Table 7-32 MCR instruction cycle timing .. 7-43
Table 7-33 MRRC instruction cycle timing .. 7-44
Table 7-34 MCRR instruction cycle timing .. 7-45
Table 7-35 Coprocessor absent instruction cycle timing .. 7-46
Table 7-36 Unexecuted instruction cycle timing ... 7-48
Table 8-1 Coprocessor 14 register map ... 8-17
Table 9-1 Target AC timing parameters .. 9-9
Table A-1 Clock interface signals .. A-2
Table A-2 Instruction memory interface signals .. A-3
viii Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

List of Tables
Table A-3 Data memory interface signals .. A-4
Table A-4 Miscellaneous signals ... A-6
Table A-5 Coprocessor interface signals ... A-7
Table A-6 Debug signals ... A-8
Table B-1 Public instructions ... B-7
Table B-2 Scan chain number allocation ... B-12
Table B-3 Scan chain 1 bit order ... B-15
Table B-4 ARM9E-S core EmbeddedICE-RT logic register map ... B-27
Table B-5 Watchpoint control register for data comparison functions B-30
Table B-6 Watchpoint control register for instruction comparison functions B-32
Table B-7 Debug control register bit functions ... B-33
Table B-8 Interrupt signal control ... B-34
Table B-9 Debug status register bit functions .. B-35
Table B-10 Method of entry ... B-35
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ix

List of Tables
x Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

List of Figures
ARM9E-S Core Technical Reference Manual

Key to timing diagram conventions .. xviii
Figure 1-1 Five-stage pipeline .. 1-3
Figure 1-2 Typical pipeline sequence ... 1-4
Figure 1-3 ARM9E-S r2p1 core .. 1-8
Figure 1-4 ARM9E-S interface diagram ... 1-9
Figure 1-5 ARM9E-S EmbeddedICE-RT logic ... 1-10
Figure 2-1 Big-endian addresses of bytes within words ... 2-4
Figure 2-2 Little-endian addresses of bytes within words ... 2-5
Figure 2-3 Register organization in ARM state ... 2-11
Figure 2-4 Register organization in Thumb state ... 2-13
Figure 2-5 ARM state and Thumb state registers relationship ... 2-14
Figure 2-6 Program status register ... 2-15
Figure 3-1 Simple memory cycle .. 3-8
Figure 3-2 Nonsequential instruction fetch cycle .. 3-9
Figure 3-3 Sequential instruction fetch cycles .. 3-11
Figure 3-4 Completed instruction fetch ... 3-12
Figure 3-5 Instruction Fetch canceled by IKILL .. 3-12
Figure 3-6 Canceled instruction fetch followed by a sequential access 3-13
Figure 3-7 Canceled instruction fetch followed by an internal cycle ... 3-13
Figure 3-8 Canceled instruction fetch followed by a nonsequential fetch 3-14
Figure 3-9 Two canceled sequential instruction fetches ... 3-14
Figure 3-10 ARM9E-S aborted data memory access ... 3-21
Figure 3-11 Data replication ... 3-24
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. xi

List of Figures
Figure 3-12 Simple memory cycle .. 3-25
Figure 3-13 Nonsequential data memory cycle .. 3-27
Figure 3-14 Back to back memory cycles .. 3-27
Figure 3-15 Sequential access cycles .. 3-29
Figure 3-16 Completed data transfer ... 3-32
Figure 3-17 Data transfer canceled by DKILL .. 3-32
Figure 3-18 Back to back data transfer with DABORT ... 3-33
Figure 3-19 Use of CLKEN .. 3-35
Figure 3-20 Alteration of next memory request during waited bus cycle 3-36
Figure 4-1 Retaking the FIQ exception .. 4-4
Figure 4-2 Stopping CLK for power saving .. 4-5
Figure 4-3 Using CLK and CLKEN for best interrupt latency ... 4-5
Figure 5-1 ARM9E-S core LDC/STC cycle timing .. 5-4
Figure 5-2 ARM9E-S coprocessor clocking ... 5-5
Figure 5-3 ARM9E-S core MCR or MRC transfer timing ... 5-8
Figure 5-4 ARM9E-S core MCRR or MRRC transfer timing .. 5-9
Figure 5-5 ARM9E-S core interlocked MCR .. 5-10
Figure 5-6 ARM9E-S core interlocked MCRR .. 5-11
Figure 5-7 ARM9E-S core late-canceled CDP ... 5-12
Figure 5-8 ARM9E-S core privileged instructions .. 5-14
Figure 5-9 ARM9E-S core busy waiting and interrupts .. 5-15
Figure 5-10 ARM9E-S core coprocessor 15 MCRs ... 5-16
Figure 5-11 Coprocessor connections ... 5-17
Figure 6-1 System reset ... 6-3
Figure 6-2 ARM9E-S core behavior on exit from reset .. 6-5
Figure 8-1 Typical debug system ... 8-3
Figure 8-2 ARM9E-S core debug block diagram ... 8-5
Figure 8-3 The ARM9E-S, TAP controller, and EmbeddedICE-RT ... 8-6
Figure 8-4 Breakpoint timing .. 8-9
Figure 8-5 Watchpoint entry with data processing instruction .. 8-12
Figure 8-6 Watchpoint entry with branch ... 8-13
Figure 8-7 Clock synchronization ... 8-15
Figure 8-8 Debug comms channel control register .. 8-18
Figure 8-9 Coprocessor 14 monitor mode debug status register format 8-19
Figure 9-1 Instruction memory interface timing, InMREQ and ISEQ ... 9-3
Figure 9-2 Data memory interface timing ... 9-4
Figure 9-3 Clock enable timing .. 9-4
Figure 9-4 Coprocessor interface timing .. 9-5
Figure 9-5 Exception and configuration timing ... 9-5
Figure 9-6 Debug interface timing .. 9-6
Figure 9-7 Interrupt sensitivity status timing ... 9-6
Figure 9-8 JTAG interface timing ... 9-7
Figure 9-9 DBGSDOUT to DBGTDO relationship .. 9-7
Figure 9-10 PADV timing ... 9-8
Figure B-1 ARM9E-S core scan chain arrangements .. B-2
Figure B-2 Test access port controller state transitions ... B-4
Figure B-3 ID code register format ... B-11
xii Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

List of Figures
Figure B-4 Typical scan chain cell .. B-13
Figure B-5 Debug exit sequence .. B-22
Figure B-6 ARM9E-S core EmbeddedICE macrocell overview .. B-29
Figure B-7 Watchpoint control register for data comparison ... B-30
Figure B-8 Watchpoint control register for instruction comparison ... B-31
Figure B-9 Debug control register format .. B-33
Figure B-10 Debug status register .. B-34
Figure B-11 Debug control and status register structure .. B-37
Figure B-12 Vector catch register ... B-38
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. xiii

List of Figures
xiv Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Preface

This preface introduces the ARM9E-S Revision r2p1 Technical Reference Manual. It
contains the following sections:

• About this manual on page xvi

• Feedback on page xx.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. xv

Preface
About this manual

This is the technical reference manual for the ARM9E-S r2p1 core.

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual,
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This manual has been written for experienced hardware and software engineers who
want to design or develop products based on the ARM9E-S family of processors. It
assumes no prior knowledge of ARM products.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM9E-S core, and for a
summary of the ARM9E-S instruction set.

Chapter 2 Programmer’s Model

Read this chapter for a description of the programmer’s model for the
ARM9E-S core.

Chapter 3 Memory Interface

Read this chapter for a description of the memory interface, including
descriptions of the instruction and data interfaces.

Chapter 4 Interrupts

Read this chapter for a description of interrupt operation. The chapter
includes interrupt latency details.

Chapter 5 Coprocessor Interface

Read this chapter for a description of the coprocessor interface. The
chapter includes timing diagrams for coprocessor operations.

Chapter 8 Debug Interface and EmbeddedICE-RT
xvi Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Preface
Read this chapter for an overview of the debug interface and the
EmbeddedICE-RT logic.

Chapter 6 Device Reset

Read this chapter for a description of the reset behavior of the ARM9E-S
core.

Chapter 7 Instruction Cycle Times

Read this chapter for a summary of instruction cycle timings and a
description of interlocks.

Chapter 9 AC Parameters

Read this chapter for a description of the AC timing parameters of the
ARM9E-S core.

Appendix A Signal Descriptions

Read this chapter for a description of all the ARM9E-S interface signals.

Appendix B Debug in depth

Read this chapter for a detailed description of the debug interface.

Conventions

Conventions that this Thumb can use are described in:

• Typographical

• Timing diagrams on page xviii

• Signals on page xviii.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
ARM processor signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. xvii

Preface
monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax
where they appear in code or code fragments. They appear in
normal font without brackets in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in
timing diagrams. Variations, when they occur, have clear labels. You must not assume
any timing information that is not explicit in the diagrams.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means HIGH for
active-HIGH signals and LOW for active-LOW signals.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xviii Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Preface
Prefix n Denotes active-LOW signals except in the case of AHB or
Advanced Peripheral Bus (APB) reset signals.

Prefix P Denotes APB signals.

Suffix n AHB HRESETn and APB PRESETn reset signals.

Further reading

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not
answered by this document, contact info@arm.com or visit our web site at
http://www.arm.com.

ARM publications

This manual contains information that is specific to the ARM9E-S core. Refer to the
following manuals for related information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ETM9 Technical Reference Manual (ARM DDI 0157)

• ARM Software Development Kit User Guide (ARM DUI 0040)

• ARM Application Note 99 - Core Type & Revision Identification (ARM DAI
0099).

Other publications

This section lists relevant documents published by third parties.

• IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan
Architecture.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. xix

Preface
Feedback

ARM Limited welcomes feedback both on the ARM9E-S core and its documentation.

Feedback on the product

If you have any comments or suggestions about this product, contact your supplier
giving:

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments on this ARM, send email to errata@arm.com giving:

• the title

• the number

• the relevant page number(s) to which your comments apply

• a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.
xx Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Chapter 1
Introduction

This chapter introduces the ARM9E-S r2p1 core. It contains the following sections:

• About the ARM9E-S core on page 1-2

• ARM9E-S architecture on page 1-5

• ARM9E-S block, core, and interface diagrams on page 1-7

• ARM9E-S instruction set summary on page 1-11

• Silicon revision information on page 1-24.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ARM9E-S core

The ARM9E-S core has the ARM architecture v5TE. This includes an enhanced
multiplier design for improved DSP performance.

The ARM9E-S core is a member of the ARM family of 32-bit microprocessors. The
ARM family offers high performance for very low power consumption and gate count.

The ARM architecture is based on Reduced Instruction Set Computer (RISC)
principles. The reduced instruction set and related decode mechanism are much simpler
than those of Complex Instruction Set Computer (CISC) designs. This simplicity gives:

• a high instruction throughput

• an excellent real-time interrupt response

• a small, cost-effective, processor macrocell.

1.1.1 The instruction pipelines

The ARM9E-S core uses a pipeline to increase the speed of the flow of instructions to
the processor. This enables several operations to take place simultaneously, and the
processing and memory systems to operate continuously.

A five-stage ARM state pipeline is used, consisting of Fetch, Decode, Execute,
Memory, and Writeback stages. This is shown in Figure 1-1 on page 1-3.
1-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
Figure 1-1 Five-stage pipeline

During normal operation:

• one instruction is being fetched from memory

• the previous instruction is being decoded

• the instruction before that is being executed

• the instruction before that is performing data accesses (if applicable)

• the instruction before that is writing its data back to the register bank.

A typical sequence of operations is shown in Figure 1-2 on page 1-4.

ARM Thumb

PC

The program counter (PC) points
to the instruction being fetched
rather than to the instruction being
executed.

PC

PC - 4 PC - 2

PC - 8 PC - 4

Instruction fetched from memory

Registers used in instruction are decoded

Execute

Decode

Fetch

Memory

Writeback

PC - 12 PC - 6

PC - 16 PC - 8

Shift and ALU operation

Writeback to register bank

Data access to/from memory
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-3

Introduction
Figure 1-2 Typical pipeline sequence

1.1.2 Memory access

The ARM9E-S core has a Harvard architecture. This features separate address and data
buses for both the 32-bit instruction interface and the 32-bit data interface. This achieves
a significant decrease in Cycles Per Instruction (CPI) by enabling instruction and data
accesses to run concurrently.

Only load, store, coprocessor load, coprocessor store, and swap instructions can access
data from memory. Data can be 8-bit bytes, 16-bit halfwords or 32-bit words. Words
must be aligned to 4-byte boundaries. Halfwords must be aligned to 2-byte boundaries.

1.1.3 Forwarding, interlocking, and data dependencies

Because of the nature of the five-stage pipeline, it is possible for a value to be required
for use before it has been placed in the register bank by the actions of an earlier
instruction. The ARM9E-S control logic automatically detects these cases and stalls the
core or forwards data as applicable to overcome these hazards. No intervention is
required by software in these cases, although you can improve software performance by
re-ordering instructions in certain situations.

CLK

IA[31:1], InMREQ,

ISEQ

INSTR[31:0]

DA[31:0], DnMREQ,

DSEQ, DMORE

WDATA[31:0]

RDATA[31:0]

Instruction

memory access

Register

decode

Register

read

First multiply

cycle

Shift ALU Data memory

access

Second

multiply cycle

Register

write

F D E M W
1-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
1.2 ARM9E-S architecture

The ARM9E-S processor has two instruction sets:

• the 32-bit ARM instruction set used in ARM state

• the 16-bit Thumb instruction set used in Thumb state.

The ARM9E-S core is an implementation of the ARM architecture v5TE. For details of
both the ARM and Thumb instruction sets, see the ARM Architecture Reference
Manual.

1.2.1 Instruction compression

A typical 32-bit architecture can manipulate 32-bit integers with single instructions, and
address a large address space much more efficiently than a 16-bit architecture. When
processing 32-bit data, a 16-bit architecture takes at least two instructions to perform
the same task as a single 32-bit instruction.

When a 16-bit architecture has only 16-bit instructions, and a 32-bit architecture has
only 32-bit instructions, overall the 16-bit architecture has higher code density, and
greater than half the performance of the 32-bit architecture.

Thumb implements a 16-bit instruction set on a 32-bit architecture, giving higher
performance than on a 16-bit architecture, with higher code density than a 32-bit
architecture.

The ARM9E-S core gives you the choice of running in ARM state, or Thumb state, or
a mix of the two. This enables you to optimize both code density and performance to
best suit your application requirements.

1.2.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM
instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-bit
ARM instruction that has the same effect on the processor model. Thumb instructions
operate with the standard ARM register configuration, enabling excellent
interoperability between ARM and Thumb states.

Thumb has all the advantages of a 32-bit core:

• 32-bit address space

• 32-bit registers

• 32-bit shifter and Arithmetic Logic Unit (ALU)

• 32-bit memory transfer.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-5

Introduction
Thumb therefore offers a long branch range, powerful arithmetic operations, and a large
address space.

Thumb code is typically 65% of the size of ARM code, and provides 160% of the
performance of ARM code when running on a processor connected to a 16-bit memory
system. Thumb, therefore, makes the ARM9E-S core ideally suited to embedded
applications with restricted memory bandwidth, where code density is important.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets, gives designers
the flexibility to emphasize performance or code size on a subroutine level, according
to the requirements of their applications. For example, critical loops for applications
such as fast interrupts and DSP algorithms can be coded using the full ARM instruction
set, and linked with Thumb code.
1-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
1.3 ARM9E-S block, core, and interface diagrams

The ARM9E-S architecture, core, and interface diagrams are shown in the following
figures:

• ARM9E-S r2p1 core on page 1-8 is shown in Figure 1-3 on page 1-8

• ARM9E-S interface diagram on page 1-9 is shown in Figure 1-4 on page 1-9

• ARM9E-S EmbeddedICE-RT logic on page 1-10 is shown in Figure 1-5 on
page 1-10.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-7

Introduction
Figure 1-3 ARM9E-S r2p1 core

ALU

SAT(x2) Shifter

Byte/
word
repl.

Multiplier

Register bank plus
program counterPSR

Instruction
pipeline

Instruction
decode

and
data path

control
logic

IA[31:1]

DDScan

DA[31:0]

Byte rotate/
sign extend

Exception
vectors

IAreg

Amux

Bmux Cmux

DIN[31:0]

C[31:0]B[31:0]A[31:0] Imm

Shift

BData[..]AData[..]

PSRRD[31:0]

ACC

SAT

CLZ

DINC
DAreg

DINFWD[31:0]

WDATA[31:0] RDATA[31:0]

ResultMe[31:0]

ALUOutEx[31:0]

MulResultMe[31:0]

Incrementer

INSTR[31:0]

IDScan
1-8 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
Figure 1-4 ARM9E-S interface diagram

CLK

CLKEN

CORECLKENOUT

nIRQ

nFIQ

nRESET

CFGHIVECS

CFGDISLTBIT

CFGBIGEND

CFGTHUMB32

Clock

Interrupts

Miscellaneous

configuration

IA[31:1]

INSTR[31:0]

IABORT

InMREQ

ISEQ

ITBIT

IKILL

InTRANS

InM[4:0]

Instruction

memory

interface

DBGIEBKPT

DBGDEWPT

EDBGRQ

DBGACK

DBGEXT[1:0]

DBGEN

DBGRNG[1:0]

DBGCOMMRX

DBGCOMMTX

DBGRQI

DBGINSTREXEC

DBGINSTRVALID

THUMBHW

Debug

ARM9E-S

TAPID[31:0]

DBGTAPSM[3:0]

DBGSDOUT

DBGSDIN

DBGSCREG[4:0]

DBGnTDOEN

DBGIR[3:0]

DBGTCKEN

DBGTMS

DBGTDI

DBGnTRST

DBGTDO

EmbeddedICE

and scan

interface

ETMZIFIRST

ETMZILAST

PADV

ETMIAFE[31:0]

ETM interface

DA[31:0]

WDATA[31:0]

RDATA[31:0]

DBURST[3:0]

DABORT

DnRW

DMAS[1:0]

DnTRANS[1:0]

DnM[4:0]

DnMREQ

DSEQ

DMORE

DKILL

DLOCK

DnSPEC

Data

memory

interface

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

Coprocessor

interface
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-9

Introduction
Figure 1-5 ARM9E-S EmbeddedICE-RT logic

See Chapter 8 Debug Interface and EmbeddedICE-RT for a description of the
EmbeddedICE-RT logic.

EmbeddedICE-RT

logic

CPU

EmbeddedICE-RT

TAP controller

D
a
ta

b
u
s

DBGRNG[1:0]

DBGEXT[1:0]

DKILL, DLOCK, DnRW, DMAS[1:0],

DnTRANS, DBURST[31:0], DnMREQ, DSEQ

DA[31:0]

WDATA[31:0]

RDATA[31:0]

IKILL, InMREQ, ISEQ,

ITBIT, InTRANS

IA[31:0]

INSTR[31:0]

DBGTCKEN

DBGTMS

DBGnTRST

DBGTDI

DBGTDO

Scan chain 1

Scan chain 2

Coprocessor

interface

signals
1-10 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
1.4 ARM9E-S instruction set summary

This section provides:

• an Extended ARM instruction set summary on page 1-12

• a Thumb instruction set summary on page 1-20.

A key to the ARM and Thumb instruction set tables is given in Table 1-1.

The ARM9E-S core is an implementation of the ARM architecture v5TE. For a
description of the ARM and Thumb instruction sets, see the ARM Architecture
Reference Manual. Contact ARM Limited for complete descriptions of all instruction
sets.

Table 1-1 Key to instruction set tables

Symbol Description

{cond} See Table 1-6 on page 1-19.

<Oprnd2> See Table 1-4 on page 1-18.

{field} See Table 1-5 on page 1-19.

S Sets condition codes (optional).

B Byte operation (optional).

H Halfword operation (optional).

T Forces DnTRANS to be active (0). Cannot be used with pre-indexed
addresses.

<a_mode2> See Table 1-3 on page 1-16.

<a_mode2P> See Table 1-3 on page 1-16.

<a_mode3> See Table 1-3 on page 1-16.

<a_mode4L> See Table 1-3 on page 1-16.

<a_mode4S> See Table 1-3 on page 1-16.

<a_mode5> See Table 1-3 on page 1-16.

#32bit_Imm A 32-bit constant, formed by right-rotating an 8-bit value by an even number
of bits.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-11

Introduction
1.4.1 Extended ARM instruction set summary

The extended ARM instruction set summary is given in Table 1-2.

<reglist> A comma-separated list of registers, enclosed in braces ({and}).

x Selects HIGH or LOW 16 bits of register Rm. T selects the HIGH 16 bits. (T
= top) B selects the LOW 16 bits. (B = bottom).

y Selects HIGH or LOW 16 bits of register Rs. T selects the HIGH 16 bits. (T
= top) B selects the LOW 16 bits. (B = bottom).

Table 1-1 Key to instruction set tables (continued)

Symbol Description

Table 1-2 ARM instruction set summary

Operation Assembler

Move Move MOV{cond}{S} <Rd>, <Oprnd2>

Move NOT MVN{cond}{S} <Rd>, <Oprnd2>

Move SPSR to register MRS{cond} <Rd>, SPSR

Move CPSR to register MRS{cond} <Rd>, CPSR

Move register to SPSR MSR{cond} SPSR{field}, <Rm>

Move register to CPSR MSR{cond} CPSR{field}, <Rm>

Move immediate to SPSR flags MSR{cond} SPSR_flg, #<32bit_Imm>

Move immediate to CPSR flags MSR{cond} CPSR_flg, #<32bit_Imm>

Arithmetic Add ADD{cond}{S} <Rd>, <Rn>, <Oprnd2>

Add with carry ADC{cond}{S} <Rd>, <Rn>, <Oprnd2>

Subtract SUB{cond}{S} <Rd>, <Rn>, <Oprnd2>

Subtract with carry SBC{cond}{S} <Rd>, <Rn>, <Oprnd2>

Reverse subtract RSB{cond}{S} <Rd>, <Rn>, <Oprnd2>

Reverse subtract with carry RSC{cond}{S} <Rd>, <Rn>, <Oprnd2>

Multiply MUL{cond}{S} <Rd>, <Rm>, <Rs>

Multiply accumulate MLA{cond}{S} <Rd>, <Rm>, <Rs>, <Rn>
1-12 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
Multiply unsigned long UMULL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

Multiply unsigned accumulate long UMLAL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

Multiply signed long SMULL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

Multiply signed accumulate long SMLAL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

Compare CMP{cond} <Rd>, <Oprnd2>

Compare negative CMN{cond} <Rd>, <Oprnd2>

Saturating add QADD{cond} <Rd>, <Rn>, <Rs>

Saturating add with double QDADD{cond} <Rd>, <Rm>, <Rn>

Saturating subtract QSUB{cond} <Rd>, <Rm>, <Rn>

Saturating subtract with double QDSUB{cond} <Rd>, <Rm>, <Rn>

Multiply 16x16 SMULxy{cond} <Rd>, <Rm>, <Rs>

Multiply accumulate 16x16+32 SMLAxy{cond} <Rd>, <Rm>, <Rs>, <Rn>

Multiply 32x16 SMULWx{cond} <Rd>, <Rm>, <Rs>

Multiply accumulate 32x16+32 SMLAWx{cond} <Rd>, <Rm>, <Rs>, <Rn>

Multiply signed accumulate long
16x16+64

SMLALx{cond} <RdLo>, <RdHi>, <Rm>, <Rs>

Count leading zeros CLZ{cond} <Rd>, <Rm>

Logical Test TST{cond} <Rn>, <Oprnd2>

Test equivalence TEQ{cond} <Rn>, <Oprnd2>

AND AND{cond}{S} <Rd>, <Rn>, <Oprnd2>

XOR EOR{cond}{S} <Rd>, <Rn>, <Oprnd2>

OR ORR{cond}{S} <Rd>, <Rn>, <Oprnd2>

Bit clear BIC{cond}{S} <Rd>, <Rn>, <Oprnd2>

Branch Branch B{cond} label

Branch with link BL{cond} label

Table 1-2 ARM instruction set summary (continued)

Operation Assembler
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-13

Introduction
Branch and exchange BX{cond} <Rm>

Branch, link and exchange BLX label

Branch, link and exchange BLX{cond} <Rm>

Load Word LDR{cond} <Rd>, <a_mode2>

Word with User mode privilege LDR{cond}T <Rd>, <a_mode2P>

Byte LDR{cond}B <Rd>, <a_mode2>

Branch and exchange LDR{cond} R15, <a_mode2>

Byte with User mode privilege LDR{cond}BT <Rd>, <a_mode2P>

Byte signed LDR{cond}SB <Rd>, <a_mode3>

Halfword LDR{cond}H <Rd>, <a_mode3>

Halfword signed LDR{cond}SH <Rd>, <a_mode3>

Doubleword LDR{cond}D <Rd>, <a_mode3>

Multiple block
data operations

Stack operations LDM{cond}<a_mode4L> <Rd>{!}, <reglist>

Increment before LDM{cond}IB <Rn>{!}, <reglist>{^}

Increment after LDM{cond}IA <Rn>{!}, <reglist>{^}

Decrement before LDM{cond}DB <Rn>{!}, <reglist>{^}

Decrement after LDM{cond}DA <Rn>{!}, <reglist>{^}

Stack operations and restore CPSR LDM{cond}<a_mode4L> <Rn>{!}, <reglist+pc>^

User registers LDM{cond}<a_mode4L> <Rn>{!}, <reglist>^

Store Word STR{cond} <Rd>, <a_mode2>

Word with User mode privilege STR{cond}T <Rd>, <a_mode2P>

Byte STR{cond}B <Rd>, <a_mode2>

Byte with User mode privilege STR{cond}BT <Rd>, <a_mode2P>

Halfword STR{cond}H <Rd>, <a_mode3>

Table 1-2 ARM instruction set summary (continued)

Operation Assembler
1-14 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
Doubleword STR{cond}D <Rd>, <a_mode3>

Soft preload Memory can prepare to load from
address

PLD <a_mode2>

Multiple block
data operations

Stack operations STM{cond}<a_mode4S> <Rn>{!}, <reglist>

Increment before STM{cond}IB <Rn>{!}, <reglist>{^}

Increment after STM{cond}IA <Rn>{!}, <reglist>{^}

Decrement before STM{cond}DB <Rn>{!}, <reglist>{^}

Decrement after STM{cond}DA <Rn>{!}, <reglist>{^}

User registers STM{cond}<a_mode4S> <Rn>{!}, <reglist>^

Swap Word SWP{cond} <Rd>, <Rm>, [<Rn>]

Byte SWP{cond}B <Rd>, <Rm>, [<Rn>]

Coprocessors Data operations CDP{cond} p<cpnum>, <op1>, <CRd>, <CRn>, <CRm>{, <op2>}

Move to ARM reg from coproc MRC{cond} p<cpnum>, <op1>, <Rd>, <CRn>, <CRm>{, <op2>}

Move to coproc from ARM reg MCR{cond} p<cpnum>, <op1>, <Rd>, <CRn>, <CRm>{, <op2>}

Move double to ARM reg from
coproc

MRRC{cond} p<cpnum>, <op1>, <Rd>, <Rn>, <CRm>

Move double to coproc from ARM
reg

MCRR{cond} p<cpnum>, <op1>, <Rd>, <Rn>, <CRm>

Load LDC{cond} p<cpnum>, <CRd>, <a_mode5>

Store STC{cond} p<cpnum>, <CRd>, <a_mode5>

Software
interrupt

SWI{cond} <24bit_Imm>

Software
breakpoint

BKPT<immediate>

Table 1-2 ARM instruction set summary (continued)

Operation Assembler
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-15

Introduction
Addressing modes are summarized in Table 1-3.

Table 1-3 Addressing modes

Mode Operation Assembler

Addressing mode 2 Immediate offset [<Rn>, #+/-<12bit_Offset>]

Register offset [<Rn>, +/-<Rm>]

Scaled register offset [<Rn>, +/-<Rm>, LSL #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, LSR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, ASR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, ROR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, RRX]

Pre-indexed offset -

Immediate [<Rn>, #+/-<12bit_Offset>]!

Register [<Rn>, +/-<Rm>]!

Scaled register [<Rn>, +/-<Rm>, LSL #<5bit_shift_imm>]!

[<Rn>, +/-<Rm>, LSR #<5bit_shift_imm>]!

[<Rn>, +/-<Rm>, ASR #<5bit_shift_imm>]!

[<Rn>, +/-<Rm>, ROR #<5bit_shift_imm>]!

[<Rn>, +/-<Rm>, RRX]!

Post-indexed offset -

Immediate [<Rn>], #+/-<12bit_Offset>

Register [<Rn>], +/-<Rm>

Scaled register [<Rn>], +/-<Rm>, LSL #<5bit_shift_imm>

[<Rn>], +/-<Rm>, LSR #<5bit_shift_imm>

[<Rn>], +/-<Rm>, ASR #<5bit_shift_imm>

[<Rn>], +/-<Rm>, ROR #<5bit_shift_imm>

[<Rn>], +/-<Rm>, RRX

Addressing mode 2 (privileged) Immediate offset [<Rn>, #+/-<12bit_Offset>]
1-16 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
Register offset [<Rn>, +/-<Rm>]

Scaled register offset [<Rn>, +/-<Rm>, LSL #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, LSR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, ASR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, ROR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, RRX]

Post-indexed offset -

Immediate [<Rn>], #+/-<12bit_Offset>

Register [<Rn>], +/-<Rm>

Scaled register [<Rn>], +/-<Rm>, LSL #<5bit_shift_imm>

[<Rn>], +/-<Rm>, LSR #<5bit_shift_imm>

[<Rn>], +/-<Rm>, ASR #<5bit_shift_imm>

[<Rn>], +/-<Rm>, ROR #<5bit_shift_imm>

[<Rn>], +/-<Rm>, RRX

Addressing mode 3 Immediate offset [<Rn>, #+/-<8bit_Offset>]

Pre-indexed [<Rn>, #+/-<8bit_Offset>]!

Post-indexed [<Rn>], #+/-<8bit_Offset>

Register offset [<Rn>, +/-<Rm>]

Pre-indexed [<Rn>, +/-<Rm>]!

Post-indexed [<Rn>], +/-<Rm>

Addressing mode 4 (load) IA Increment after FD Full descending

IB Increment before ED Empty descending

DA Decrement after FA Full ascending

DB Decrement before EA Empty ascending

Addressing mode 4 (store) IA Increment after EA Empty ascending

Table 1-3 Addressing modes (continued)

Mode Operation Assembler
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-17

Introduction
Oprnd2 is summarized in Table 1-4.

IB Increment before FA Full ascending

DA Decrement after ED Empty descending

DB Decrement before FD Full descending

Addressing mode 5 (load) Immediate offset [<Rn>, #+/-<(8bit_Offset*4)>]

Pre-indexed [<Rn>, #+/-<(8bit_Offset*4)>]!

Post-indexed [<Rn>], #+/-<(8bit_Offset*4>)

Table 1-3 Addressing modes (continued)

Mode Operation Assembler

Table 1-4 Oprnd2

Operation Assembler

Immediate value #<32bit_Imm>

Logical shift left <Rm> LSL <#5bit_Imm>

Logical shift right <Rm> LSR <#5bit_Imm>

Arithmetic shift right <Rm> ASR <#5bit_Imm>

Rotate right <Rm> ROR <#5bit_Imm>

Register <Rm>

Logical shift left <Rm> LSL <Rs>

Logical shift right <Rm> LSR <Rs>

Arithmetic shift right <Rm> ASR <Rs>

Rotate right <Rm> ROR <Rs>

Rotate right extended <Rm> RRX
1-18 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
Fields are summarized in Table 1-5.

Condition fields are summarized in Table 1-6.

Table 1-5 Fields

Suffix Sets

_c Control field mask bit (bit 0)

_x Extension field mask bit (bit 1)

_s Status field mask bit (bit 2)

_f Flags field mask bit (bit 3)

Table 1-6 Condition fields

Suffix Description

EQ Equal

NE Not equal

HS/CS Unsigned higher or same

LO/CC Unsigned lower

MI Negative

PL Positive or zero

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower or same

GE Greater or equal

LT Less than

GT Greater than

LE Less than or equal

AL Always
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-19

Introduction
1.4.2 Thumb instruction set summary

The Thumb instruction set summary is given in Table 1-7.

Table 1-7 Thumb instruction set summary

Operation Assembler

Move Immediate MOV <Rd>, #<8bit_Imm>

High to Low MOV <Rd>, <Hs>

Low to High MOV <Hd>, <Rs>

High to High MOV <Hd>, <Hs>

Arithmetic Add ADD <Rd>, <Rs>, #<3bit_Imm>

Add Low and Low ADD <Rd>, <Rs>, <Rn>

Add High to Low ADD <Rd>, <Hs>

Add Low to High ADD <Hd>, <Rs>

Add High to High ADD <Hd>, <Hs>

Add Immediate ADD <Rd>, #<8bit_Imm>

Add Value to SP ADD SP, #<7bit_Imm> ADD SP, #<-7bit_Imm>

Add with carry ADC <Rd>, <Rs>

Subtract SUB <Rd>, <Rs>, <Rn> SUB <Rd>, <Rs>,

#<3bit_Imm>

Subtract Immediate SUB <Rd>, #<8bit_Imm>

Subtract with carry SBC <Rd>, <Rs>

Negate NEG <Rd>, <Rs>

Multiply MUL <Rd>, <Rs>

Compare Low and Low CMP <Rd>, <Rs>

Compare Low and High CMP <Rd>, <Hs>

Compare High and Low CMP <Hd>, <Rs>

Compare High and High CMP <Hd>, <Hs>

Compare Negative CMN <Rd>, <Rs>
1-20 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
Compare Immediate CMP <Rd>, #<8bit_Imm>

Logical AND AND <Rd>, <Rs>

XOR EOR <Rd>, <Rs>

OR ORR <Rd>, <Rs>

Bit clear BIC <Rd>, <Rs>

Move NOT MVN <Rd>, <Rs>

Test bits TST <Rd>, <Rs>

Shift/Rotate Logical shift left LSL <Rd>, <Rs>, #<5bit_shift_imm> LSL <Rd>,

<Rs>

Logical shift right LSR <Rd>, <Rs>, #<5bit_shift_imm> LSR <Rd>,

<Rs>

Arithmetic shift right ASR <Rd>, <Rs>, #<5bit_shift_imm> ASR <Rd>,

<Rs>

Rotate right ROR <Rd>, <Rs>

Branch Conditional -

If Z set BEQ label

If Z clear BNE label

If C set BCS label

If C clear BCC label

If N set BMI label

If N clear BPL label

If V set BVS label

If V clear BVC label

If C set and Z clear BHI label

If C clear or Z set BLS label

If N set and V set, or

If N clear and V clear

BGE label

Table 1-7 Thumb instruction set summary (continued)

Operation Assembler
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-21

Introduction
If N set and V clear, or

If N clear and V set

BLT label

If Z clear, and N and V set, or

If Z clear, and N and V clear

BGT label

If Z set, or

N set and V clear, or

N clear and V set

BLE label

Unconditional B label

Long branch with link BL label

Long branch, link and

exchange instruction

BLX label

Branch and exchange To address held in Low reg BX <Rs>

To address held in High reg BX <Hs>

Branch, link and exchange To address held in Low reg BLX <Rs>

To address held in High reg BLX <Hs>

Load With immediate offset -

Word LDR <Rd>, [<Rb>, #<7bit_offset>]

Halfword LDRH <Rd>, [<Rb>, #<6bit_offset>]

Byte LDRB <Rd>, [<Rb>, #<5bit_offset>]

With register offset -

Word LDR <Rd>, [<Rb>, <Ro>]

Halfword LDRH <Rd>, [<Rb>, <Ro>]

Halfword signed LDRSH <Rd>, [<Rb>, <Ro>]

Byte LDRB <Rd>, [<Rb>, <Ro>]

Byte signed LDRSB <Rd>, [<Rb>, <Ro>]

PC-relative LDR <Rd>, [PC, #<10bit_offset>]

SP-relative LDR <Rd>, [SP, #<10bit_offset>]

Table 1-7 Thumb instruction set summary (continued)

Operation Assembler
1-22 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Introduction
Address -

Using PC ADD <Rd>, PC, #<10bit_offset>

Using SP ADD <Rd>, SP, #<10bit_offset>

Multiple LDMIA <Rb!>, <reglist>

Store With immediate offset -

Word STR <Rd>, [<Rb>, #<7bit_offset>]

Halfword STRH <Rd>, [<Rb>, #<6bit_offset>]

Byte STRB <Rd>, [<Rb>, #<5bit_offset>]

With register offset -

Word STR <Rd>, [<Rb>, <Ro>]

Halfword STRH <Rd>, [<Rb>, <Ro>]

Byte STRB <Rd>, [<Rb>, <Ro>]

SP-relative STR <Rd>, [SP, #<10bit_offset>]

Multiple STMIA <Rb!>, <reglist>

Push/Pop Push registers onto stack PUSH <reglist>

Push LR and registers onto stack PUSH <reglist, LR>

Pop registers from stack POP <reglist>

Pop registers and PC from stack POP <reglist, PC>

Software interrupt SWI <8bit_Imm>

Software breakpoint BKPT<immediate>

Table 1-7 Thumb instruction set summary (continued)

Operation Assembler
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 1-23

Introduction
1.5 Silicon revision information

This section describes the changes between product revisions.

1.5.1 Changes between ARM9E-S Rev 1 and Rev 2

The following changes have been made between the ARM9E-S (Rev 1) and the
ARM9E-S (Rev 2):

• corrections for Rev 1 errata

• memory interface changes:

— the addition of cancel signals IKILL, and DKILL

— the addition of burst length signal DBURST

— the addition of 32-bit fetches in Thumb state using CFGTHUMB32 and
THUMBHW.

• the addition of the pipeline advance signal PADV

• removal of input CORECLKENIN.

1.5.2 Changes between ARM9E-S r2p0 and r2p1

ARM9E-S r2p1 includes a correction for an erratum in ARM9E-S r2p0. Further
information can be found in the ARM9E-S Errata List.

Note
 ARM has changed the format of revision numbers. Rev 2 is revision r2p0 in the revised
format.
1-24 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Chapter 2
Programmer’s Model

This chapter describes the ARM9E-S programmer’s model. It contains the following
sections:

• About the programmer’s model on page 2-2

• Processor operating states on page 2-3

• Memory formats on page 2-4

• Instruction length on page 2-6

• Data types on page 2-7

• Operating modes on page 2-8

• Registers on page 2-9

• The program status registers on page 2-15

• Exceptions on page 2-19.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-1

Programmer’s Model
2.1 About the programmer’s model

The ARM9E-S processor implements ARM architecture v5TE. This includes the 32-bit
ARM instruction set and the16-bit Thumb instruction set. For details of both the ARM
and Thumb instruction sets, see the ARM Architecture Reference Manual.
2-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
2.2 Processor operating states

The ARM9E-S core has two operating states:

ARM state 32-bit, word-aligned ARM instructions are executed in this state.

Thumb state 16-bit, halfword-aligned Thumb instructions.

In Thumb state, the Program Counter (PC) uses bit 1 to select between alternate
halfwords.

Note
 Transition between ARM and Thumb states does not affect the processor mode or the
register contents.

2.2.1 Switching state

You can switch the operating state of the ARM9E-S core between ARM state and
Thumb state using the BX and BLX instructions, and loads to the PC. Switching state is
described in the ARM Architecture Reference Manual.

All exceptions are entered, handled, and exited in ARM state. If an exception occurs in
Thumb state the processor reverts to ARM state. The transition back to Thumb state
occurs automatically on return from the exception handler.

For full details of the ARM9E-S instruction set, contact ARM Limited.

2.2.2 Interworking ARM and Thumb state

The ARM9E-S core enables you to mix ARM and Thumb code. For details see the
Interworking ARM and Thumb chapter in the ARM Software Development Kit User
Guide.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-3

Programmer’s Model
2.3 Memory formats

The ARM9E-S core views memory as a linear collection of bytes numbered in
ascending order from zero. Bytes 0 to 3 hold the first stored word, and bytes 4 to 7 hold
the second stored word, for example.

The ARM9E-S core can treat words in memory as being stored in either:

• Big-endian format

• Little-endian format.

2.3.1 Big-endian format

In big-endian format, the ARM9E-S core stores the most significant byte of a word at
the lowest-numbered byte, and the least significant byte at the highest-numbered byte.
Therefore, byte 0 of the memory system connects to data lines 31 to 24. This is shown
in Figure 2-1.

Figure 2-1 Big-endian addresses of bytes within words

2.3.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is the least significant byte
of the word and the highest-numbered byte is the most significant. Therefore, byte 0 of
the memory system connects to data lines 7 to 0. This is shown in Figure 2-2 on
page 2-5.

4

0

8

5

1

9

7

3

11

6

2

10

31 24 23 16 15 8 7 Word address0

4

0

8
Higher address

Lower address

• Most significant byte is at lowest address

• Word is addressed by byte address of most significant byte

Bit
2-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
Figure 2-2 Little-endian addresses of bytes within words

7

3

11

6

2

10

4

0

8

5

1

9

31 24 23 16 15 8 7 Word address0

4

0

8
Higher address

Lower address

• Least significant byte is at lowest address

• Word is addressed by byte address of least significant byte

Bit
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-5

Programmer’s Model
2.4 Instruction length

Instructions are either:

• 32 bits long (in ARM state)

• 16 bits long (in Thumb state).
2-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
2.5 Data types

The ARM9E-S core supports the following data types:

• word (32-bit)

• halfword (16-bit)

• byte (8-bit).

You must align these as follows:

• word quantities must be aligned to four-byte boundaries

• halfword quantities must be aligned to two-byte boundaries

• byte quantities can be placed on any byte boundary.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-7

Programmer’s Model
2.6 Operating modes

In all states there are seven modes of operation:

• User mode is the usual ARM program execution state, and is used for executing
most application programs.

• Fast interrupt (FIQ) mode is used for handling fast interrupts.

• Interrupt (IRQ) mode is used for general-purpose interrupt handling.

• Supervisor mode is a protected mode for the operating system.

• Abort mode is entered after a data or instruction Prefetch Abort.

• System mode is a privileged user mode for the operating system.

• Undefined mode is entered when an undefined instruction exception occurs.

Modes other than User mode are collectively known as privileged modes. Privileged
modes are used to service interrupts or exceptions, or to access protected resources.
2-8 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
2.7 Registers

The ARM9E-S core has a total of 37 registers:

• 31 general-purpose 32-bit registers

• 6 32-bit status registers.

These registers are not all accessible at the same time. The processor state and operating
mode determine which registers are available to the programmer.

2.7.1 The ARM state register set

In ARM state, 16 general registers and one or two status registers are accessible at any
one time. In privileged modes, mode-specific banked registers become available.
Figure 2-3 on page 2-11 shows which registers are available in each mode.

The ARM state register set contains 16 directly-accessible registers, r0 to r15. A further
register, the Current Program Status Register (CPSR), contains condition code flags
and the current mode bits. Registers r0 to r13 are general-purpose registers used to hold
either data or address values. Registers r14, r15, and the CPSR have the following
special functions:

Link register Register r14 is used as the subroutine Link Register (LR).

Register r14 receives a copy of r15 when a Branch with Link (BL
or BLX) instruction is executed.

You can treat r14 as a general-purpose register at all other times.
The corresponding banked registers r14_svc, r14_irq, r14_fiq,
r14_abt and r14_und are similarly used to hold the return values
of r15 when interrupts and exceptions arise, or when BL or BLX
instructions are executed within interrupt or exception routines.

Program counter Register r15 holds the PC:

• in ARM state this is word-aligned

• in Thumb state this is halfword-aligned.

In privileged modes, another register, the Saved Program Status Register (SPSR), is
accessible. This contains the condition code flags and the mode bits saved as a result of
the exception that caused entry to the current mode.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-9

Programmer’s Model
Banked registers have a mode identifier that indicates which mode they relate to. These
mode identifiers are shown in Table 2-1.

FIQ mode has seven banked registers mapped to r8–r14 (r8_fiq–r14_fiq). As a result
many FIQ handlers do not have to save any registers.

The Supervisor, Abort, IRQ, and Undefined modes each have alternative mode-specific
registers mapped to r13 and r14, enabling a private stack pointer and link register for
each mode.

Figure 2-3 on page 2-11 shows the ARM state registers.

Table 2-1 Register mode identifiers

Mode Mode identifier

User usra

a. The user identifier is usually omitted
from register names. It is only used in
descriptions where the User or System
mode register is specifically accessed
from another operating mode.

Fast interrupt fiq

Interrupt irq

Supervisor svc

Abort abt

System usra

Undefined und
2-10 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
Figure 2-3 Register organization in ARM state

ARM state general registers and program counter

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

System and User

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

ARM state program status registers

Indicates that the normal register used by the User or System mode
has been replaced by an alternative register specific to the exception mode.

r0

r1

r2

r3

r4

r5

r6

r7

r8_fiq

r9_fiq

r10_fiq

r11_fiq

r12_fiq

r13_fiq

r14_fiq

r15 (PC)

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

r13_svc

r14_svc

r15 (PC)

Supervisor

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_abt

r14_abt

r15 (PC)

Abort

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_irq

r14_irq

r15 (PC)

IRQ

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_und

r14_und

r15 (PC)

Undefined

r8

r9

r10

r11

r12
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-11

Programmer’s Model
2.7.2 The Thumb state register set

The Thumb state register set is a subset of the ARM state set. The programmer has
direct access to:

• eight general registers, r0–r7 (for details of high register access in Thumb state
see Accessing high registers in Thumb state on page 2-14).

• the PC

• a stack pointer, SP (ARM r13)

• an LR (ARM r14)

• the CPSR.

There are banked SPs, LRs, and SPSRs for each privileged mode. This register set is
shown in Figure 2-4 on page 2-13.
2-12 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
Figure 2-4 Register organization in Thumb state

2.7.3 ARM state and Thumb state registers relationship

The relationship between the Thumb state and ARM state registers is shown in
Figure 2-5 on page 2-14.

Thumb state general registers and program counter

System and User

r0

r1

r2

r3

r4

r5

r6

r7

SP

LR

PC

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Thumb state program status registers

= banked register

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_fiq

LR_fiq

PC

Supervisor

r0

r1

r2

r3

r4

r5

r6

r7

SP_svc

LR_svc

PC

Abort

r0

r1

r2

r3

r4

r5

r6

r7

SP_abt

LR_abt

PC

IRQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_irq

LR_irq

PC

Undefined

r0

r1

r2

r3

r4

r5

r6

r7

SP_und

LR_und

PC
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-13

Programmer’s Model
Figure 2-5 ARM state and Thumb state registers relationship

Note
 Registers r0–r7 are known as the low registers. Registers r8–r15 are known as the high
registers.

2.7.4 Accessing high registers in Thumb state

In Thumb state, the high registers (r8–r15) are not part of the standard register set. With
assembly language programming you have limited access to them, but can use them for
fast temporary storage.

You can use special variants of the MOV instruction to transfer a value from a low register
(in the range r0–r7) to a high register, and from a high register to a low register. The CMP
instruction enables you to compare high register values with low register values. The
ADD instruction enables you to add high register values to low register values. For more
details, see the ARM Architecture Reference Manual.

Thumb state ARM state

r0

r1

r2

r3

r5

r6

r7

r8

r9

r10

r11

r12

Stack pointer (r13)

Link register (r14)

Program counter (r15)

CPSR

SPSR

r4

r0

r1

r2

r3

r5

r6

r7

Stack pointer (SP)

Link register (LR)

Program counter (PC)

CPSR

SPSR

r4
2-14 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
2.8 The program status registers

The ARM9E-S core contains one CPSR, and five SPSRs for exception handlers to use.
The program status registers:

• hold information about the most recently performed ALU operation

• control the enabling and disabling of interrupts

• set the processor operating mode.

The arrangement of bits in the status registers is shown in Figure 2-6, and described in
The condition code flags on page 2-16 to Reserved bits on page 2-18.

Figure 2-6 Program status register

Note
 The unused bits of the status registers might be used in future ARM architectures, and
must not be modified by software. The unused bits of the status registers are readable,
to enable the processor state to be preserved (for example, during process context
switches) and writable, to enable the processor state to be restored. To maintain
compatibility with future ARM processors, and as good practice, you are strongly
advised to use a read-modify-write strategy when changing the CPSR.

Overflow

Condition
code flags

Carry/Borrow/Extend

Zero

Negative/Less than

Mode bits

Thumb state bit

FIQ disable

IRQ disable

Reserved Control bits

Sticky overflow

31 30 29 28 27 26 8 7 6 5 4 0

N Z C V Q Reserved I F T Mode
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-15

Programmer’s Model
2.8.1 The condition code flags

The N, Z, C, and V bits are the condition code flags. They can be set by arithmetic and
logical operations, and also by MSR and LDM instructions. The ARM9E-S core tests these
flags to determine whether to execute an instruction.

All instructions can execute conditionally on the state of the N, Z, C, and V bits in ARM
state. In Thumb state, only the Branch instruction can be executed conditionally. For
more information about conditional execution, see the ARM Architecture Reference
Manual.

2.8.2 The Q flag

The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic
instructions:

• QADD

• QDADD

• QSUB

• QDSUB

• SMLAxy

• SMLAWy.

The Q flag is sticky in that, when set by an instruction, it remains set until explicitly
cleared by an MSR instruction writing to the CPSR. Instructions cannot execute
conditionally on the status of the Q flag. To determine the status of the Q flag you must
read the PSR into a register and extract the Q flag from this. For details of how the Q
flag is set and cleared, see individual instruction definitions in the ARM Architectural
Reference Manual.

2.8.3 The control bits

The bottom eight bits of a PSR are known collectively as the control bits. They are the:

• Interrupt disable bits

• T bit on page 2-17

• Mode bits on page 2-17.

The control bits change when an exception occurs. When the processor is operating in
a privileged mode, software can manipulate these bits.

Interrupt disable bits

The I and F bits are the interrupt disable bits:

• when the I bit is set, IRQ interrupts are disabled
2-16 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
• when the F bit is set, FIQ interrupts are disabled.

T bit

Caution
 Never use an MSR instruction to force a change to the state of the T bit in the CPSR. If
you do this, the processor enters an unpredictable state.

The T bit reflects the operating state:

• when the T bit is set, the processor is executing in Thumb state

• when the T bit is clear, the processor is executing in ARM state.

The operating state is reflected by the ITBIT external signal.

Mode bits

M[4:0] are the mode bits.

Caution
 An illegal value programmed into M[4:0] causes the processor to enter an
unrecoverable state. If this occurs, apply reset. Not all combinations of the mode bits
define a valid processor mode, so take care to use only those bit combinations shown.

These bits determine the processor operating mode as shown in Table 2-2.

Table 2-2 PSR mode bit values

M[4:0] Mode
Visible state registers

Thumb ARM

b10000 User r0–r7, r8-r12a, SP, LR, PC,
CPSR

r0–r14, PC, CPSR

b10001 FIQ r0–r7, r8_fiq-r12_fiqa,
SP_fiq, LR_fiq PC, CPSR,
SPSR_fiq

r0–r7, r8_fiq–r14_fiq, PC,
CPSR, SPSR_fiq

b10010 IRQ r0–r7, r8-r12a, SP_irq,
LR_irq, PC, CPSR,
SPSR_irq

r0–r12, r13_irq, r14_irq, PC,
CPSR, SPSR_irq
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-17

Programmer’s Model
2.8.4 Reserved bits

The remaining bits in the PSRs are unused, but are reserved. When changing a PSR flag
or control bits, make sure that these reserved bits are not altered. You must ensure that
your program does not rely on reserved bits containing specific values because future
processors might use some or all of the reserved bits.

b10011 Supervisor r0–r7, r8-r12a, SP_svc,
LR_svc, PC, CPSR,
SPSR_svc

r0–r12, r13_svc, r14_svc, PC,
CPSR, SPSR_svc

b10111 Abort r0–r7, r8-r12a, SP_abt,
LR_abt, PC, CPSR,
SPSR_abt

r0–r12, r13_abt, r14_abt, PC,
CPSR, SPSR_abt

b11011 Undefined r0–r7, r8-r12a, SP_und,
LR_und, PC, CPSR,
SPSR_und

r0–r12, r13_und, r14_und, PC,
CPSR, SPSR_und

b11111 System r0–r7, r8-r12a, SP, LR, PC,
CPSR

r0–r14, PC, CPSR

a. Access to these registers is limited in Thumb state.

Table 2-2 PSR mode bit values (continued)

M[4:0] Mode
Visible state registers

Thumb ARM
2-18 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
2.9 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example, to service an interrupt from a peripheral. Before attempting to handle an
exception, the ARM9E-S core preserves the current processor state so that the original
program can resume when the handler routine has finished.

If two or more exceptions arise simultaneously, the exceptions are dealt with in the fixed
order given in Exception priorities on page 2-25.

This section provides details of the ARM9E-S exception handling:

• Exception entry and exit summary

• Entering an ARM exception on page 2-20

• Leaving an ARM exception on page 2-20.

2.9.1 Exception entry and exit summary

Table 2-3 summarizes the PC value preserved in the relevant r14 on exception entry, and
the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception
or entry

Return instruction
Previous state

Notes
ARM r14_x Thumb r14_x

SWI MOVS PC, R14_svc PC + 4 PC+2 Where the PC is the address of the
SWI or undefined instruction.

UNDEF MOVS PC, R14_und PC + 4 PC+2

PABT SUBS PC, R14_abt, #4 PC + 4 PC+4 Where the PC is the address of
instruction that had the Prefetch
Abort.

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC+4 Where the PC is the address of the
instruction that was not executed
because the FIQ or IRQ took
priority.

IRQ SUBS PC, R14_irq, #4 PC + 4 PC+4

DABT SUBS PC, R14_abt, #8 PC + 8 PC+8 Where the PC is the address of the
Load or Store instruction that
generated the Data Abort.

RESET NA - - The value saved in r14_svc on
reset is UNPREDICTABLE.

BKPT SUBS PC, R14_abt, #4 PC + 4 PC+4 Software breakpoint.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-19

Programmer’s Model
2.9.2 Entering an ARM exception

When handling an ARM exception the ARM9E-S core:

1. Preserves the address of the next instruction in the appropriate LR. When the
exception entry is from:

• ARM state, the ARM9E-S copies the address of the next instruction into the
LR (current PC + 4 or PC + 8 depending on the exception).

• Thumb state, the ARM9E-S writes the value of the PC into the LR, offset
by a value (current PC + 2, PC + 4 or PC + 8 depending on the exception)
that causes the program to resume from the correct place on return.

The exception handler does not have to determine the state when entering an
exception. For example, in the case of a SWI, MOVS PC, r14_svc always returns to
the next instruction regardless of whether the SWI was executed in ARM or
Thumb state.

2. Copies the CPSR into the appropriate SPSR.

3. Forces the CPSR mode bits to a value which depends on the exception.

4. Forces the PC to fetch the next instruction from the relevant exception vector.

The ARM9E-S can also set the interrupt disable flags to prevent otherwise
unmanageable nesting of exceptions.

Note
 Exceptions are always entered, handled, and exited in ARM state. When the processor
is in Thumb state and an exception occurs, the switch to ARM state takes place
automatically when the exception vector address is loaded into the PC.

2.9.3 Leaving an ARM exception

When an exception has completed, the exception handler must move the LR, minus an
offset to the PC. The offset varies according to the type of exception, as shown in
Table 2-3 on page 2-19.

If the S bit is set and rd = r15, the core copies the SPSR back to the CPSR and clears
the interrupt disable flags that were set on entry.

Note
 The action of restoring the CPSR from the SPSR automatically resets the T bit to the
values held immediately prior to the exception. The I and F bits are automatically
restored to the value they held immediately prior to the exception.
2-20 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
2.9.4 Reset

When the nRESET signal is driven LOW a reset occurs, and the ARM9E-S core
abandons the executing instruction.

When nRESET is driven HIGH again the ARM9E-S core:

1. Forces CPSR[4:0] to b10011 (Supervisor mode), sets the I and F bits in the CPSR,
and clears the CPSR T bit. Other bits in the CPSR are indeterminate.

2. Forces the PC to fetch the next instruction from the reset vector address.

3. Reverts to ARM state, and resumes execution.

After reset, all register values except the PC and CPSR are indeterminate.

See Chapter 6 Device Reset for more details of the ARM9E-S reset behavior.

2.9.5 Fast interrupt request

The Fast Interrupt Request (FIQ) exception supports fast interrupts. In ARM state, FIQ
mode has eight private registers to reduce, or even remove the requirement for register
saving (minimizing the overhead of context switching).

An FIQ is externally generated by taking the nFIQ signal input LOW. The nFIQ input
is registered internally to the ARM9E-S core. It is the output of this register that is used
by the ARM9E-S core control logic.

Irrespective of whether exception entry is from ARM state or Thumb state, a FIQ
handler returns from the interrupt by executing:

SUBS PC,R14_fiq,#4

You can disable FIQ exceptions within a privileged mode by setting the CPSR F flag.
When the F flag is clear, the ARM9E-S checks for a LOW level on the output of the
nFIQ register at the end of each instruction.

FIQs and IRQs are disabled when an FIQ occurs. Nested interrupts are enabled but it is
up to the programmer to save any corruptible registers and to re-enable FIQs and
interrupts.

2.9.6 Interrupt request

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ
has a lower priority than FIQ, and is masked on entry to an FIQ sequence. You can
disable IRQ at any time, by setting the I bit in the CPSR from a privileged mode.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-21

Programmer’s Model
Irrespective of whether exception entry is from ARM state or Thumb state, an IRQ
handler returns from the interrupt by executing:

SUBS PC,R14_irq,#4

You can disable IRQ exceptions within a privileged mode by setting the CPSR I flag.
When the I flag is clear, the ARM9E-S core checks for a LOW level on the output of
the nIRQ register at the end of each instruction.

IRQs are disabled when an IRQ occurs. Nested interrupts are enabled but it is up to you
to save any corruptible registers and to re-enable IRQs.

2.9.7 Aborts

An abort indicates that the current memory access cannot be completed. An abort is
signaled by one of the two external abort input pins, IABORT and DABORT.

There are two types of abort:

• Prefetch Abort

• Data Abort.

IRQs are disabled when an abort occurs.

Prefetch Abort

This is signaled by an assertion on the IABORT input pin and checked at the end of
each instruction fetch.

When a Prefetch Abort occurs, the ARM9E-S core marks the prefetched instruction as
invalid, but does not take the exception until the instruction reaches the Execute stage
of the pipeline. If the instruction is not executed, for example because a branch occurs
while it is in the pipeline, the abort does not take place.

After dealing with the cause of the abort, the handler executes the following instruction
irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data Abort

This is signaled by an assertion on the DABORT input pin and checked at the end of
each data access, both read and write.

The ARM9E-S core implements the base restored Data Abort model, which differs
from the base updated Data Abort model implemented by the ARM7TDMI-S.
2-22 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
The difference in the Data Abort model affects only a very small section of operating
system code, in the Data Abort handler. It does not affect user code.

With the base restored Data Abort model, when a Data Abort exception occurs during
the execution of a memory access instruction, the base register is always restored by the
processor hardware to the value it contained before the instruction was executed. This
removes the requirement for the Data Abort handler to unwind any base register update,
which might have been specified by the aborted instruction. This greatly simplifies the
software Data Abort handler.

The abort mechanism enables you to implement a demand-paged virtual memory
system. In such a system, the processor is enabled to generate arbitrary addresses. When
the data at an address is unavailable, the Memory Management Unit (MMU) signals an
abort. The abort handler must then work out the cause of the abort, make the requested
data available, and retry the aborted instruction. The application program requires no
knowledge of the amount of memory available to it, and its state is not affected by the
abort.

After dealing with the cause of the abort, the handler must execute the following return
instruction irrespective of the processor operating state at the point of entry:

SUBS PC,R14_abt,#8

This action restores both the PC and the CPSR, and retries the aborted instruction.

2.9.8 Software interrupt instruction

You can use the Software Interrupt Instruction (SWI) to enter Supervisor mode, usually
to request a particular supervisor function. A SWI handler returns by executing the
following instruction, irrespective of the processor operating state:

MOVS PC, R14_svc

This action restores the PC and CPSR, and returns to the instruction following the SWI.
The SWI handler reads the opcode to extract the SWI function number.

IRQs are disabled when a software interrupt occurs.

2.9.9 Undefined instruction

When an instruction is encountered that neither the ARM9E-S, nor any coprocessor in
the system can handle, the ARM9E-S takes the undefined instruction trap. Software can
use this mechanism to extend the ARM instruction set by emulating undefined
coprocessor instructions.

After emulating the failed instruction, the trap handler executes the following
instruction, irrespective of the processor operating state:
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-23

Programmer’s Model
MOVS PC,R14_und

This action restores the CPSR and returns to the next instruction after the undefined
instruction.

IRQs are disabled when an undefined instruction trap occurs. For more information
about undefined instructions, see the ARM Architecture Reference Manual.

2.9.10 Breakpoint instruction (BKPT)

A breakpoint (BKPT) instruction operates as though the instruction caused a Prefetch
Abort.

A breakpoint instruction does not cause the ARM9E-S core to take the Prefetch Abort
exception until the instruction reaches the Execute stage of the pipeline. If the
instruction is not executed, for example because a branch occurs while it is in the
pipeline, the breakpoint does not take place.

After dealing with the breakpoint, the handler executes the following instruction
irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the breakpointed instruction.

Note
 If the EmbeddedICE-RT logic is configured into halt mode, a breakpoint instruction
causes the ARM9E-S core to enter debug state. See Debug control register on
page B-32.

2.9.11 Exception vectors

You can configure the location of the exception vector addresses using the input
CFGHIVECS, as shown in Table 2-4.

Table 2-4 Configuration of exception vector address locations

Value of
CFGHIVECS

Exception vector
base location

0 0x0000 0000

1 0xFFFF 0000
2-24 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Programmer’s Model
Table 2-5 shows the exception vector addresses and entry conditions for the different
exception types.

2.9.12 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines the
order in which they are handled:

1. Reset (highest priority).

2. Data Abort.

3. FIQ.

4. IRQ.

5. Prefetch Abort.

6. BKPT, undefined instruction, and SWI (lowest priority).

Some exceptions cannot occur together:

• The BKPT, or undefined instruction, and SWI exceptions are mutually exclusive.
Each corresponds to a particular (non-overlapping) decoding of the current
instruction.

• When FIQs are enabled, and a Data Abort occurs at the same time as an FIQ, the
ARM9E-S core enters the Data Abort handler, and proceeds immediately to the
FIQ vector.

A normal return from the FIQ causes the Data Abort handler to resume execution.

Table 2-5 Exception vectors

Exception
Offset from
vector base

Mode on entry
I bit on
entry

F bit on
entry

Reset 0x00 Supervisor Disabled Disabled

Undefined instruction 0x04 Undefined Disabled Unchanged

Software interrupt 0x08 Supervisor Disabled Unchanged

Abort (prefetch) 0x0C Abort Disabled Unchanged

Abort (data) 0x10 Abort Disabled Unchanged

Reserved 0x14 Reserved - -

IRQ 0x18 IRQ Disabled Unchanged

FIQ 0x1C FIQ Disabled Disabled
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 2-25

Programmer’s Model
Data Aborts must have higher priority than FIQs to ensure that the transfer error
does not escape detection. You must add the time for this exception entry to the
worst-case FIQ latency calculations in a system that uses aborts to support virtual
memory.

The FIQ handler must not access any memory that can generate a Data Abort,
because the initial Data Abort exception condition is lost.
2-26 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Chapter 3
Memory Interface

This chapter describes the ARM9E-S memory interface. It contains the following
sections:

• About the memory interface on page 3-2

• Instruction interface on page 3-3

• Instruction interface addressing signals on page 3-4

• Instruction interface data timed signals on page 3-6

• Endian effects for instruction fetches on page 3-7

• Instruction interface cycle types on page 3-8

• Data interface on page 3-15

• Data interface addressing signals on page 3-17

• Data interface data timed signals on page 3-20

• Data interface cycle types on page 3-25

• Endian effects for data transfers on page 3-34

• Use of CLKEN to control bus cycles on page 3-35.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-1

Memory Interface
3.1 About the memory interface

The ARM9E-S core has a Harvard bus architecture with separate instruction and data
interfaces. This enables concurrent instruction and data accesses, and greatly reduces
the Cycles Per Instruction (CPI) of the processor. For optimal performance, single-cycle
memory accesses for both interfaces are required, although the core can be wait-stated
for nonsequential accesses, or slower memory systems.

For both instruction and data interfaces, the ARM9E-S core uses pipelined addressing.
This means that the address and control signals are generated the cycle before the data
transfer takes place. All memory accesses are timed with the clock CLK.

For each interface there are different types of memory access:

• Nonsequential

• Sequential

• Internal

• Coprocessor transfer (for the data interface).

The ARM9E-S core can operate in both big-endian and little-endian memory
configurations and this is selected by the CFGBIGEND input. The endian
configuration affects both interfaces, so you must take care when designing the memory
interface logic to allow correct operation of the processor core.

For system programming purposes, you must normally provide some mechanism for
the data interface to access instruction memory. There are two main reasons for this:

• The use of in-line data for literal pools is very common. This data is fetched using
the data interface but is normally contained in the instruction memory space.

• To enable debug using the JTAG interface it must be possible to download code
into the instruction memory. This code has to be written to memory through the
data interface, because the instruction interface is read-only. In this case it is
essential for the data interface to have access to the instruction memory.

A typical implementation of an ARM9E-S based cached processor has Harvard caches
and a unified memory structure beyond the caches, therefore giving the data interface
access to the instruction memory space. However, for an SRAM-based system, you
cannot use this technique, and you must use an alternative method.

It is not necessary for the instruction interface to have access to the data memory area
unless the processor has to execute code from data memory.
3-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
3.2 Instruction interface

The ARM9E-S core requests instructions for execution using the instruction memory
interface. A new instruction is fetched over the instruction bus whenever an instruction
enters the Execute stage of the pipeline.

Instruction fetches take place in the Fetch stage of the pipeline.

3.2.1 Instruction interface signals

The signals in the ARM9E-S core instruction interface can be grouped into four
categories:

• Clocking and clock control signals:

— CLK
— CLKEN
— nRESET.

• Address class signals:

— IA[31:1]
— ITBIT
— InTRANS
— InM[4:0].

• Memory request signals:

— InMREQ
— IKILL
— ISEQ.

• Data timed signals:

— INSTR[31:0]
— IABORT.

Each of these signal groups shares a common timing relationship to the bus interface
cycle. All signals in the ARM9E-S instruction interface are generated from, or sampled
by, the rising edge of CLK.

You can extend bus cycles using the CLKEN signal (see Use of CLKEN to control bus
cycles on page 3-35). Unless otherwise stated CLKEN is permanently HIGH.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-3

Memory Interface
3.3 Instruction interface addressing signals

The address class signals for the instruction memory interface are:

• IA[31:1]

• ITBIT

• InTRANS

• InM[4:0] on page 3-5.

3.3.1 IA[31:1]

IA[31:1] is the 31-bit address bus that specifies the address for the transfer. All
addresses are byte addresses, so a burst of 32-bit instruction fetches results in the
address bus incrementing by four for each cycle.

Note
 The ARM9E-S core does not produce IA[0] as all instruction accesses are
halfword-aligned (that is, IA[0] = 0).

The address bus provides 4GB of linear addressing space. When a word access is
signaled the memory system must ignore IA[1].

3.3.2 ITBIT

The ITBIT signal indicates when the ARM9E-S core is in a Thumb state. ITBIT is
asserted in the same cycle as the IA and InMREQ signals for an access in Thumb state.
When in Thumb state the ARM9E-S core performs aligned halfword fetches or aligned
word fetches depending on the state of CFGTHUMB32 as shown in Table 3-2 on
page 3-7 and Table 3-3 on page 3-7.

3.3.3 InTRANS

The InTRANS signal encodes information about the transfer. A memory management
unit uses this signal to determine if an access is from a privileged mode. Therefore, you
can use this signal to implement an access permission scheme. The encoding of
InTRANS is shown in Table 3-1.

Table 3-1 InTRANS encoding

InTRANS Mode

0 User

1 Privileged
3-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
3.3.4 InM[4:0]

InM[4:0] indicates the operating mode of the ARM9E-S core. This bus corresponds to
the bottom five bits of the CPSR, the outputs are inverted with respect to the CPSR.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-5

Memory Interface
3.4 Instruction interface data timed signals

The data timed signals for the instruction memory interface are:

• INSTR[31:0]

• IABORT.

3.4.1 INSTR[31:0]

INSTR[31:0] is the read data bus, and is used by the ARM9E-S core to fetch
instructions. The INSTR[31:0] signal is sampled on the rising edge of CLK at the end
of the bus cycle.

3.4.2 IABORT

IABORT indicates that an instruction fetch failed to complete successfully. IABORT
is sampled at the end of the bus cycle during active memory cycles (S cycles and N
cycles).

If IABORT is asserted on an instruction fetch, the abort is tracked down the pipeline,
and the Prefetch Abort trap is taken if the instruction is executed.

IABORT can be used by a memory management system to implement, for example, a
memory protection scheme, or a demand-paged virtual memory system.

For more details about aborts, see Aborts on page 2-22.
3-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
3.5 Endian effects for instruction fetches

The ARM9E-S core performs 32-bit or 16-bit instruction fetches depending on the state
of the processor and the CFGTHUMB32 pin. The processor state can be determined
externally by the value of the ITBIT signal.

The address produced by the ARM9E-S is always halfword-aligned. The significant
address bits are listed in Table 3-2.

When a halfword instruction fetch is performed, a 32-bit memory system can return the
complete 32-bit word, and the ARM9E-S core extracts the valid halfword field from it.
The field extracted depends on the state of the CFGBIGEND signal, which determines
the endianness of the system (see Memory formats on page 2-4).

When connecting 8-bit or 16-bit memory systems to the ARM9E-S core, ensure that the
data is presented to the correct byte lanes on the ARM9E-S core as shown in Table 3-3.

Table 3-2 Significant address bits

CFGTHUMB32 ITBIT Width
Significant
address bits

0 1 Halfword IA[31:1]

X 0 Word IA[31:2]

1 1 Word IA[31:2]

Table 3-3 Halfword accesses

CFGTHUMB32 ITBIT
IA[1
]

Little-endian
CFGBIGEND = 0

Big-endian
CFGBIGEND = 1

0 1 0 INSTR[15:0] INSTR[31:16]

0 1 1 INSTR[31:16] INSTR[15:0]
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-7

Memory Interface
3.6 Instruction interface cycle types

The ARM9E-S instruction interface is pipelined. The address class signals and the
memory request signals are broadcast in the bus cycle ahead of the bus cycle to which
they refer. This gives the maximum time for a memory cycle to decode the address, and
respond to the access request.

A single memory cycle is shown in Figure 3-1.

Figure 3-1 Simple memory cycle

The ARM9E-S core instruction interface can perform three different types of memory
cycle. These are indicated by the state of the InMREQ and ISEQ signals. Memory
cycle types are encoded on the InMREQ and ISEQ signals as shown in Table 3-4.

A memory controller for the ARM9E-S core must commit to an instruction memory
access only on an N cycle or an S cycle.

CLK

Address class
signals

InMREQ,
ISEQ

IKILL

Address

Cycle type

Bus cycle

Instruction
data

Cancel Cycle

INSTR[31:0]

Table 3-4 Cycle types

InMREQ ISEQ Cycle type Description

0 0 N cycle Nonsequential cycle

0 1 S cycle Sequential cycle

1 X I cycle Internal cycle
3-8 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
The ARM9E-S instruction interface has three types of memory cycle:

Nonsequential cycle

During this the ARM9E-S core requests a transfer to or from an
address that is unrelated to the address used in the preceding cycle.
See Instruction interface, nonsequential cycles.

Sequential cycle During this the ARM9E-S core requests a transfer to or from an
address that is either one word, or one halfword greater than the
address used in the preceding sequential or nonsequential cycle.
See Instruction interface, sequential cycles on page 3-10.

Internal cycle During this the ARM9E-S core does not require a transfer because
it is performing an internal function, and no useful prefetching can
be performed at the same time.

3.6.1 Instruction interface, nonsequential cycles

A nonsequential instruction fetch is the simplest form of an ARM9E-S instruction
interface cycle, and occurs when the ARM9E-S core requests a transfer from an address
that is unrelated to the address used in the preceding cycle. The memory controller must
initiate a memory access to satisfy this request.

The address class signals and the InMREQ, ISEQ = N cycle signals are broadcast on
the instruction interface bus. At the end of the next bus cycle the instruction is
transferred to the CPU from memory. This is shown in Figure 3-2.

Figure 3-2 Nonsequential instruction fetch cycle

CLK

Address class
signals

InMREQ,
ISEQ

IKILL

Address

N cycle

N cycle

Instruction
data

INSTR[31:0]
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-9

Memory Interface
3.6.2 Instruction interface, sequential cycles

Sequential instruction fetches are used to perform burst transfers on the bus. This
information can be used to optimize the design of a memory controller interfacing to a
burst memory device, such as a DRAM.

During a sequential cycle, the ARM9E-S core requests a memory location that is part
of a sequential burst. If this is the first cycle in the burst, the address might be the same
as the previous internal cycle. Otherwise the address is incremented from the previous
instruction fetch that was performed:

• for a burst of word accesses, the address is incremented by 4 bytes

• for a burst of halfword access, the address is incremented by 2 bytes.

The types of bursts are shown in Table 3-5.

All accesses in a burst are of the same width. For more details, see Instruction interface
addressing signals on page 3-4.

Bursts of byte accesses are not possible with the instruction memory interface.

Note
 An MSR switching the processor into User mode causes a sequential fetch with a different
value of InTRANS to that in the previous fetch cycle.

A burst always starts with an N cycle and continues with S cycles. The S cycles can be
interspersed with I cycles and or canceled cycles.The IA address in an S cycle is always
sequential to the address in the previous S cycle. A burst always starts with an N cycle,
and continues with S cycles. A burst comprises transfers of the same type or size. The
IA[31:1] signal increments during the burst. The other address class signals are
unaffected during a burst except for InTRANS.

An example of a burst access is shown in Figure 3-3 on page 3-11.

Table 3-5 Burst types

Burst type Address increment

Word read 4 bytes

Halfword read 2 bytes
3-10 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
Figure 3-3 Sequential instruction fetch cycles

3.6.3 Instruction interface, internal cycles

During an internal cycle, the ARM9E-S core does not require an instruction fetch,
because an internal function is being performed, and no useful prefetching can be
performed at the same time.

3.6.4 Canceled memory cycles

If IKILL is asserted, then the instruction request made (with InMREQ and ISEQ) in
the previous cycle must be abandoned and must not make any programmer-visible
persistent changes of state to the system.

The signal IKILL is only ever asserted if an instruction request is made in the previous
clock cycle. It must be used to condition both InMREQ and ISEQ. IKILL only
changes after the rising edge of CLK when CLKEN was asserted An example of an
instruction fetch that is not canceled by IKILL is shown in Figure 3-4 on page 3-12.

CLK

Address class
signals

InMREQ,
ISEQ

Address

N cycle

Address + 4

N cycle

Instruction
data 1

S cycle

Instruction
data 2

S cycle

INSTR[31:0]

IKILL
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-11

Memory Interface
Figure 3-4 Completed instruction fetch

An example of an instruction fetch canceled by IKILL is shown in Figure 3-5.

Figure 3-5 Instruction Fetch canceled by IKILL

A memory system controller must ensure that an instruction request that is revoked
using IKILL must not initiate a request on the AHB (or other system bus). A lookup
can be performed in a Level 1 cache or TLB, but no linefill or page table walk must
result from an access that has been canceled with IKILL.

The memory system controller is also responsible for ensuring that no programmer
visible state updates occur.

A canceled instruction fetch by IKILL is followed by one of:

• a sequential access to the same address as the canceled fetch (that might also be
canceled), see Figure 3-6 on page 3-13

CLK

A A+4IA

InMREQ

ISEQ

IKILL

A+8

INSTR Mem[A] Mem[A+4] Mem[A+8]

CLK

A A+4IA

InMREQ

ISEQ

IKILL

INSTR Mem[A] Ignored
3-12 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
• an internal cycle, see Figure 3-7

• a nonsequential fetch, see Figure 3-8 on page 3-14.

Figure 3-6 Canceled instruction fetch followed by a sequential access

Figure 3-7 Canceled instruction fetch followed by an internal cycle

CLK

A A+4IA

InMREQ

ISEQ

IKILL

A+4

INSTR

A+8

Mem[A] Ignored Mem[A+4] Mem[A+8]

CLK

A A+4IA

InMREQ

ISEQ

IKILL

A+8

INSTR Mem[A] Mem[A+4] Ignored Ignored Ignored
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-13

Memory Interface
Figure 3-8 Canceled instruction fetch followed by a nonsequential fetch

Figure 3-9 illustrates two sequential fetches to the same address that are both canceled.

Figure 3-9 Two canceled sequential instruction fetches

CLK

A BA+4IA

InMREQ

ISEQ

IKILL

INSTR

A+8

Mem[A] Ignored IgnoredMem[A+4] Mem[B]

CLK

A A+4IA

InMREQ

ISEQ

IKILL

INSTR Mem[A] Ignored Mem[A+4]

A+4 A+4

Ignored
3-14 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
3.7 Data interface

The ARM9E-S core requests data using the data memory interface.

Data transfers take place in the Memory stage of the pipeline. The operation of the data
interface is very similar to the instruction interface.

3.7.1 Data interface signals

The signals in the ARM9E-S core data bus interface can be grouped into four
categories:

• Clocking and clock control signals:

— CLK
— CLKEN
— nRESET.

• Address class signals:

— DA[31:0]
— DLOCK
— DMAS[1:0]
— DnM[4:0]
— DnRW
— DnTRANS.

• Memory request signals:

— DBURST[3:0]
— DKILL
— DMORE
— DnMREQ
— DnSPEC
— DSEQ.

• Data timed signals:

— DABORT
— RDATA[31:0]
— WDATA[31:0].
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-15

Memory Interface
Note
 All memory accesses are conditioned by the state of the memory request signals. You
must not initiate a memory access unless the memory request signals indicate that one
is required. See Data interface cycle types on page 3-25 for more details.

Each of these signal groups shares a common timing relationship to the bus interface
cycle. All signals in the ARM9E-S data interface are generated from, or sampled by the
rising edge of CLK.

You can extend bus cycles using the CLKEN signal (see Use of CLKEN to control bus
cycles on page 3-35). Unless otherwise stated CLKEN is permanently HIGH.
3-16 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
3.8 Data interface addressing signals

The address class signals are:

• DA[31:0]

• DLOCK

• DMAS[1:0] on page 3-18

• DnM[4:0] on page 3-18

• DnRW on page 3-18

• DnTRANS on page 3-19

• DnSPEC on page 3-19.

3.8.1 DA[31:0]

DA[31:0] is the 32-bit address bus that specifies the address for the transfer. All
addresses are byte addresses, so a burst of word accesses results in the address bus
incrementing by 4 for each cycle.

The address bus provides 4GB of linear addressing space. When a word access is
signaled the memory system must ignore the bottom two bits, DA[1:0], and when a
halfword access is signaled the memory system must ignore the bottom bit, DA[0].

3.8.2 DLOCK

DLOCK indicates to an arbiter that an atomic operation is being performed on the bus.
DLOCK is normally LOW, but is set HIGH to indicate that a SWP or SWPB instruction is
being performed. These instructions perform an atomic read/write operation, and can be
used to implement semaphores.

If DLOCK is asserted in a cycle, then this indicates that there is another access in the
next cycle that must be locked to the first. In the case of a multi-master system, the ARM
processor must not be degranted the bus when a locked transaction is being performed.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-17

Memory Interface
3.8.3 DMAS[1:0]

The DMAS[1:0] bus encodes the size of the transfer. The ARM9E-S core can transfer
word, halfword, and byte quantities. This is encoded on DMAS[1:0] as shown in
Table 3-6.

The size of transfer does not change during a burst of S cycles. Bursts of halfword or
byte accesses are not possible on the ARM9E-S core data interface.

Note
 A writable memory system for the ARM9E-S core must have individual byte write
enables. Both the ARM C compiler and the debug tool chain (for example, Multi-ICE)
assume that arbitrary bytes in the memory can be written. If individual byte write
capability is not provided, you might not be able to use these tools.

3.8.4 DnM[4:0]

DnM[4:0] indicates the operating mode of the ARM9E-S core. This bus corresponds to
the bottom five bits of the CPSR, unless a forced User mode access is being performed,
in which case DnM[4:0] indicates User mode. These bits are inverted with respect to
the CPSR.

3.8.5 DnRW

DnRW specifies the direction of the transfer. DnRW indicates an ARM9E-S write
cycle when HIGH, and an ARM9E-S read cycle when LOW. A burst of S cycles is
always either a read burst, or a write burst, because the direction cannot be changed in
the middle of a burst.

Table 3-6 Transfer widths

DMAS[1:0] Transfer width

00 Byte

01 Halfword

10 Word

11 Reserved
3-18 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
Note
 You must not initiate writes to memory purely on the basis of DnRW. You must use the
status of the data interface request signals to condition writes to memory. See Data
interface cycle types on page 3-25 for more details.

3.8.6 DnSPEC

DnSPEC is a speculative signal. If LOW at the end of the cycle, then the processor is
indicating to the memory system that the data stored at the memory location specified
by DA might be required in subsequent cycles. Because DnSPEC is a speculative signal
the memory system is not required to perform any action based on DnSPEC. The
memory system must not return an abort for a speculative access. DnSPEC is not
asserted in the same cycle as DnMREQ.

3.8.7 DnTRANS

The DnTRANS bus encodes information about the transfer. A memory management
unit uses this signal to determine if an access is from a privileged mode. Therefore, you
can use this signal to implement an access permission scheme. The encoding of
DnTRANS is shown in Table 3-7.

Table 3-7 DnTRANS encoding

DnTRANS Mode

0 User

1 Privileged
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-19

Memory Interface
3.9 Data interface data timed signals

The data timed signals are:

• DABORT

• RDATA[31:0] on page 3-21

• WDATA[31:0] on page 3-22.

3.9.1 DABORT

DABORT indicates that a memory transaction failed to complete successfully.
DABORT is sampled at the end of the bus cycle during active memory cycles (S cycles
and N cycles).

If DABORT is asserted on a data access, it causes the ARM9E-S core to take the Data
Abort trap.

DABORT can be used by a memory management system to implement, for example, a
basic memory protection scheme, or a demand-paged virtual memory system.

Figure 3-10 on page 3-21 shows the ARM9E-S core behavior for an aborted STR
instruction followed by an LDM instruction. While the STR instruction is canceled, a
memory request is made in the first cycle of the LDM before the Data Abort exception is
taken.
3-20 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
Figure 3-10 ARM9E-S aborted data memory access

For more details about aborts, see Aborts on page 2-22.

3.9.2 RDATA[31:0]

RDATA[31:0] is the read data bus, and is used by the ARM9E-S core to fetch data. It
is sampled on the rising edge of CLK at the end of the bus cycle, and is also used during
C cycles to transfer data from a coprocessor to the ARM9E-S core.

CLK

Address class
signals

DnRW

Write address Read address

DnMREQ

DSEQ

DKILL

Write cycle
(aborted)

Read cycle
(ignored by

memory system)

DMORE

WDATA[31:0]
(Write)

Write data

DABORT
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-21

Memory Interface
3.9.3 WDATA[31:0]

WDATA[31:0] is the write data bus. All data written out from the ARM9E-S core is
broadcast on this bus. Data transfers from the ARM9E-S core to a coprocessor also use
this bus during C cycles. In normal circumstances, a memory system must sample the
WDATA[31:0] bus on the rising edge of CLK at the end of a write bus cycle. The value
on WDATA[31:0] is valid only during write cycles.

3.9.4 Byte and halfword accesses

The ARM9E-S core indicates the size of a transfer using the DMAS[1:0] signals. These
are encoded as shown in Table 3-8.

All writable memory in an ARM9E-S core based system must support the writing of
individual bytes to allow the use of the ARM C compiler and the debug tool chain (for
example, Multi-ICE).

The address produced by the ARM9E-S core is always byte-aligned. However, the
memory system must ignore the insignificant bits of the address. The significant address
bits are listed in Table 3-8.

Reads

When a halfword or byte read is performed, a 32-bit memory system can return the
complete 32-bit word, and the ARM9E-S core extracts the valid halfword or byte field
from it. The fields extracted depend on the state of the CFGBIGEND signal, which
determines the endianness of the system (see Memory formats on page 2-4).

Table 3-8 Significant address bits

DMAS[1:0] Width
Significant
address bits

b00 Byte DA[31:0]

b01 Halfword DA[31:1]

b10 Word DA[31:2]
3-22 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
The fields extracted by the ARM9E-S core are shown in Table 3-9, Table 3-10, and
Table 3-11. Table 3-9 shows word accesses.

Table 3-10 shows halfword accesses.

Table 3-11 shows byte accesses.

When connecting 8-bit to 16-bit memory systems to the ARM9E-S core you must make
sure that the data is presented to the correct byte lanes on the ARM9E-S core as shown
in Table 3-10 and Table 3-11.

When performing a word load, the ARM9E-S core can rotate the data returned
internally if the address used is unaligned. See the ARM Architectural Reference
Manual for more details.

Table 3-9 Word accesses

DMAS[1:0] DA[1:0]
Little-endian
CFGBIGEND = 0

Big-endian
CFGBIGEND = 1

b10 bXX RDATA[31:0] RDATA[31:0]

Table 3-10 Halfword accesses

DMAS[1:0] DA[1:0]
Little-endian
CFGBIGEND = 0

Big-endian
CFGBIGEND = 1

b01 b0X RDATA[15:0] RDATA[31:16]

b01 b1X RDATA[31:16] RDATA[15:0]

Table 3-11 Byte accesses

DMAS[1:0] DA[1:0]
Little-endian
CFGBIGEND = 0

Big-endian
CFGBIGEND = 1

b00 b00 RDATA[7:0] RDATA[31:24]

b00 b01 RDATA[15:8] RDATA[23:16]

b00 b10 RDATA[23:16] RDATA[15:8]

b00 b11 RDATA[31:24] RDATA[7:0]
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-23

Memory Interface
Writes

When the ARM9E-S core performs a byte or halfword write, the data being written is
replicated across the bus, as shown in Figure 3-11. The memory system can use the
most convenient copy of the data. A writable memory system must be capable of
performing a write to any single byte in the memory system. This capability is required
by the ARM C compiler and the Debug tool chain.

Figure 3-11 Data replication

Byte writes

Halfword writes

ARM9E-S

Register[7:0] A
B

A
B

A
B

A
B

A
B

Memory interface

WDATA[23:16]

WDATA[7:0]

ARM9E-S

Register[15:0]

C
D

WDATA[31:16]

WDATA[15:0]

A
B

C
D

A
B

C
D

A
B

WDATA[31:24]

WDATA[15:8]

Memory interface
3-24 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
3.10 Data interface cycle types

The ARM9E-S data interface is pipelined, and so the address class signals and the
memory request signals are broadcast in the bus cycle ahead of the bus cycle to which
they refer. This gives the maximum time for a memory controller to decode the address,
and respond to the access request.

A single memory cycle is shown in Figure 3-12.

Figure 3-12 Simple memory cycle

The ARM9E-S data interface can perform four different types of memory cycle:

Nonsequential cycle

During this cycle the ARM9E-S core requests a transfer to or from an
address that is unrelated to the address used in the preceding cycle.

Sequential cycle

During this cycle the ARM9E-S core requests a transfer to or from an
address that is one word greater than the address used in the preceding
cycle.

Internal cycle

During this cycle the ARM9E-S core does not require a transfer because
it is performing an internal function.

CLK

Address class
signals

DnMREQ,
DSEQ,
DMORE

WDATA[31:0]
(Write)

Address

Cycle type

DBURST [3:0]

Read data

Bus cycle

Write data

RDATA[31:0]
(Read)

Burst size
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-25

Memory Interface
Coprocessor register transfer cycle

During this cycle the ARM9E-S core uses the data bus to communicate
with a coprocessor, but does not require any action by the memory
system.

Memory cycle types are encoded on the DnMREQ and DSEQ signals as shown in
Table 3-12.

A memory controller for the ARM9E-S core must commit to a data memory access only
on an N cycle or an S cycle.

3.10.1 Data interface, nonsequential cycles

A nonsequential cycle is the simplest form of an ARM9E-S data interface cycle, and
occurs when the ARM9E-S core requests a transfer to or from an address that is
unrelated to the address used in the preceding cycle. The memory controller must
initiate a memory access to satisfy this request.

The address class signals and the DnMREQ and DSEQ = N cycle are broadcast on the
data bus. At the end of the next bus cycle the data is transferred between the CPU and
the memory. This is shown in Figure 3-13 on page 3-27.

The ARM9E-S core can perform back-to-back, nonsequential memory cycles. This
happens, for example, when an STR instruction and an LDR instruction are executed in
succession, as shown in Figure 3-14 on page 3-27.

If you are designing a memory controller for the ARM9E-S core, and your memory
system is unable to cope with this case, use the CLKEN signal to extend the bus cycle
to allow sufficient cycles for the memory system (see Use of CLKEN to control bus
cycles on page 3-35).

Table 3-12 Cycle types

DnMREQ DSEQ Cycle type Description

0 0 N cycle Nonsequential cycle

0 1 S cycle Sequential cycle

1 0 I cycle Internal cycle

1 1 C cycle Coprocessor register transfer cycle
3-26 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
Figure 3-13 Nonsequential data memory cycle

Figure 3-14 Back to back memory cycles

CLK

Address class
signals

DnMREQ,
DSEQ,
DMORE

RDATA[31:0]
(Read)

Address

N cycle

Read data

N cycle

WDATA[31:0]
(Write)

Write data

CLK

Address class
signals

DnMREQ,
DSEQ,
DMORE

RDATA[31:0]
(Read)

Write address

N cycle

Read data

Write cycle

WDATA[31:0]
(Write)

Write data

Read address

N cycle

DnRW

Read cycle
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-27

Memory Interface
3.10.2 Data interface, sequential cycles

Sequential cycles perform burst transfers on the bus. You can use this information to
optimize the design of a memory controller interfacing to a burst memory device, such
as a DRAM.

During a sequential cycle, the ARM9E-S core requests a memory location that is part
of a sequential burst. If this is the first cycle in the burst, the address can be the same as
the previous internal cycle. Otherwise the address is incremented from the previous
cycle. For a burst of word accesses, the address is incremented by 4 bytes.

Bursts of halfword or byte accesses are not possible on the ARM9E-S data interface.

A burst always starts with an N cycle and continues with S cycles. A burst comprises
transfers of the same type. The DA[31:0] signal increments during the burst. The other
address class signals are unaffected by a burst.

The types of bursts are shown in Table 3-13.

All accesses in a burst are of the same width, direction, and protection type. For more
details, see Instruction interface addressing signals on page 3-4.

An example of a burst access is shown in Figure 3-15 on page 3-29.

Table 3-13 Burst types

Burst type Address increment Cause

Word read 4 bytes LDM instruction

Word write 4 bytes STM instruction
3-28 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
Figure 3-15 Sequential access cycles

The DMORE signal is active during load and store multiple instructions and only ever
goes HIGH when DnMREQ is LOW. This signal effectively gives the same
information as DSEQ, but a cycle ahead. This information is provided to allow external
logic more time to decode sequential cycles.

3.10.3 DBURST[3:0]

The DBURST[3:0] signal provides an indication of burst length to the memory system.
It is be presented to the memory system in the same time as the request and address class
signals during the first execute cycle of the load or store operation.

DMORE

CLK

Address class
signals

DSEQ

DKILL

Address

DBURST[3:0]

Address + 4

DnMREQ

WDATA[31:0]
(Write)

Read
data 2

N cycle

Write data 1

S cycle

Write data 2

Read
data 1

RDATA[31:0]
(Read)

Cancel Cycle

0001
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-29

Memory Interface
TheDBURST[3:0] signal does not count down as the burst continues, and it is the
responsibility of the memory system to capture the status of DBURST[3:0] at the
beginning of the burst. The validity of DBURST[3:0] must be conditioned with DKILL
in the next cycle. DBURST[3:0] is encoded as the number of words to be transferred
minus 1 (N - 1). The b0000 encoding is used to represent a single word transfer or a
burst of unspecified length. The encoding of DBURST[3:0] is shown in Table 3-14.

For coprocessor operations (LDC, STC, MRC, MCR, MRRC, and MCRR), the DBURST[3:0]
signal is set to b0000. For SWP operations, DBURST[3:0] is broadcast as b0000 for both
the read and the write part of the swap operation.

Table 3-14 DBURST[3:0] encoding

DBURST[3:0] Number of words in burst

b0000 Unspecified or 1

b0001 2

b0010 3

b0011 4

b0100 5

b0101 6

b0110 7

b0111 8

b1000 9

b1001 10

b1010 11

b1011 12

b1100 13

b1101 14

b1110 15

b1111 16
3-30 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
3.10.4 Data interface, internal cycles

During an internal cycle, the ARM9E-S core does not require a memory access, as an
internal function is being performed.

3.10.5 Data interface, coprocessor register transfer cycles

During a coprocessor register transfer cycle, the ARM9E-S core uses the data interface
to transfer data to or from a coprocessor. A memory cycle is not required and the
memory controller does not initiate a transaction.

The coprocessor interface is described in Chapter 5 Coprocessor Interface.

3.10.6 Canceled memory accesses

DKILL is only ever asserted if a data request was made in the previous clock cycle. It
must be used to condition DnMREQ, DSEQ and DMORE. DKILL only changes after
the rising edge of CLK when CLKEN was asserted.

Figure 3-16 on page 3-32 shows a data transfer that is not canceled by DKILL.
Figure 3-17 on page 3-32 shows a data transfer canceled by DKILL.

The memory system controller must ensure that writes that are revoked using DKILL
must not update memory. This is involves canceling writes to cache, tightly coupled
memory, write buffer, and external memory.

The memory system controller must ensure that a data request that is revoked using
DKILL must not initiate a request on the AHB (or other system bus). A lookup can be
performed in a Level 1 cache or TLB, but no linefill or page table walk must result from
an access that has been canceled with DKILL.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-31

Memory Interface
Figure 3-16 Completed data transfer

Figure 3-17 Data transfer canceled by DKILL

The memory system controller is also responsible for ensuring that no
programmer-visible state updates occur. For example, if an abort was going to be
generated for an access which was requested and subsequently canceled using DKILL,
the Fault Status Register (FSR) and Fault Address Register (FAR) of the data MMU
must not be updated.

Back to back memory transfers

With the addition of the DKILL signal, the ARM9E-S core cancels a data access caused
by a load/store operation present in the Execute stage, as a result of a Data Abort being
returned for a data access requested by the previous instruction. Figure 3-18 on
page 3-33 shows back-to-back memory transfers with DABORT.

CLK

ADA

DnMREQ

DSEQ

DKILL

RDATA/

WDATA
Mem[A]

CLK

ADA

DnMREQ

DSEQ

DKILL

RDATA/

WDATA
ignored
3-32 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
Figure 3-18 Back to back data transfer with DABORT

Implications for ETM

The DKILL signal can be used to condition the pipelined versions of
DnMREQ/DSEQ that are exported to the ETM.

CLK

DA

DnMREQ

DSEQ

DMORE

A B

DKILL

RDATA/WDATA

DABORT

Mem[A] ignored
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-33

Memory Interface
3.11 Endian effects for data transfers

The ARM9E-S core supports 32-bit, 16-bit, and 8-bit data memory access sizes. The
endian configuration of the processor, set by CFGBIGEND, affects only nonword
transfers (16-bit and 8-bit transfers).

3.11.1 Writes

For data writes by the processor, the write data is duplicated on the data bus. So for a
16-bit data store, one copy of the data appears on the upper half of the write data bus,
WDATA[31:16], and the same data appears on the lower half, WDATA[15:0]. For 8-bit
writes four copies are output, one on each byte lane:

• WDATA[31:24]
• WDATA[23:16]
• WDATA[15:8]
• WDATA[7:0].

This considerably eases the memory control logic design and helps overcome any
endian effects.

3.11.2 Reads

For data reads, the processor reads a specific part of the read data bus. This is
determined by:

• the endian configuration

• the size of the transfer

• bits 1 and 0 of the data address bus.

Table 3-10 on page 3-23 shows which bits of the data bus are read for 16-bit reads, and
Table 3-11 on page 3-23 shows which bits are read for 8-bit transfers.

For simplicity of design, 32-bits of data can be read from memory and the processor
ignores any unwanted bits.
3-34 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Memory Interface
3.12 Use of CLKEN to control bus cycles

The pipelined nature of the ARM9E-S bus interface means that there is a distinction
between clock cycles and bus cycles. You can use CLKEN to stretch a bus cycle, so that
it lasts for many clock cycles. The CLKEN input extends the timing of bus cycles in
increments of complete CLK cycles:

• when CLKEN is HIGH on the rising edge of CLK, a bus cycle completes

• when CLKEN is sampled LOW, the bus cycle is extended.

The CLKEN input extends bus cycles on both the instruction and data interfaces when
asserted.

In the pipeline, the address class signals and the memory request signals are ahead of
the data transfer by one bus cycle. In a system using CLKEN this can be more than one
CLK cycle. This is illustrated in Figure 3-19, which shows CLKEN being used to
extend a nonsequential cycle. In the example, the first N cycle is followed by another
N cycle to an unrelated address, and the address for the second access is broadcast
before the first access completes.

Figure 3-19 Use of CLKEN

Note
 When designing a memory controller, you must sample the values of InMREQ, ISEQ,
DnMREQ, DSEQ, DMORE, and the address class signals only when CLKEN is
HIGH. This ensures that the state of the memory controller is not accidentally updated

CLK

Address class
signals

DnMREQ,
DSEQ,
DMORE

RDATA[31:0]
(Read)

Address 1

N cycle

Read
data 1

First bus cycle

Address 2

CLKEN

Next address

N cycle Next cycle type

Read
data 2

Second bus cycle
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 3-35

Memory Interface
during a waited cycle. In addition, the ARM9E-S core can alter the request for a
subsequent memory cycle during a waited (CLKEN LOW) cycle. See Withdrawal of
memory requests in waited cycles.

3.12.1 Withdrawal of memory requests in waited cycles

The ARM9E-S core can alter the value of the memory request and address signals
during cycles in which CLKEN is LOW. This is done to improve the worst case
interrupt latency of ARM9E-S core systems. For example, a pending memory request
can be withdrawn if the core is about to take an interrupt and the access is unnecessary.

The ARM9E-S core does not alter or withdraw any access to which it is committed. An
access is said to be committed when the address and request signals are sampled on the
rising edge of CLK when CLKEN is HIGH.

The ARM9E-S core only attempts to alter or withdraw an uncommitted access during
the extended (or waited) bus cycle of a previous access. Alteration of the next memory
request during a waited bus cycle is shown in Figure 3-20.

Figure 3-20 Alteration of next memory request during waited bus cycle

Note
 This behavior affects the IA, InMREQ, ISEQ, DA, DnMREQ, DSEQ, DMORE,
DBURST[3:0], and DnSPEC outputs of the ARM9E-S core.

CLK

Address class
signals

DnMREQ,
DSEQ,
DMORE,
DnSPEC

Address 1

Request 1
N cycle

First bus cycle

CLKEN

Second bus cycle

Ignored Ignored

Ignored Ignored Internal cycle
3-36 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Chapter 4
Interrupts

This chapter describes the ARM9E-S core interrupt behavior. It contains the following
sections:

• About interrupts on page 4-2

• Hardware interface on page 4-3

• Maximum interrupt latency on page 4-6

• Minimum interrupt latency on page 4-7.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 4-1

Interrupts
4.1 About interrupts

The ARM9E-S core provides a two-level, fixed-priority asynchronous hardware
interrupt scheme.

The Fast Interrupt Request (FIQ) exception provides support for fast interrupts. The
Interrupt Request (IRQ) exception provides support for normal priority interrupts. See
Exceptions on page 2-19 for more details about the programmer’s model for interrupts.
See Chapter 9 AC Parameters for details on interrupt signal timing.This chapter
discusses:

• issues concerning the hardware interface to the ARM9E-S interrupt mechanism
that a system designer must be aware of when integrating an ARM9E-S core
system

• issues that a programmer must be aware of when writing interrupt handler
routines

• the worst case and best case interrupt latency.
4-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Interrupts
4.2 Hardware interface

The hardware interrupt is described in:

• Generating an interrupt

• Synchronization

• Re-enabling interrupts after an interrupt exception

• Interrupt registers on page 4-5.

4.2.1 Generating an interrupt

You can make the ARM9E-S core take the FIQ or IRQ exceptions (if interrupts are
enabled within the core) by asserting (LOW) the nFIQ or nIRQ inputs, respectively.It
is essential that when asserted, the interrupt input remains asserted until the ARM9E-S
core has completed its interrupt exception entry sequence, that is, until the ARM9E-S
core acknowledges to the source of the interrupt that the interrupt has been taken. This
acknowledgement normally occurs when the interrupt service routine accesses the
peripheral causing the interrupt, for example:

• by reading an interrupt status register in the systems interrupt controller

• by writing to a clear interrupt control bit

• by writing data to, or reading data from the interrupting peripheral.

4.2.2 Synchronization

The nFIQ and nIRQ inputs are synchronous inputs to the ARM9E-S core, and must be
setup and held about the rising edge of the ARM9E-S core clock, CLK. If interrupt
events that are asynchronous to CLK are present in a system, synchronization
register(s) that are external to the ARM9E-S core are required.

4.2.3 Re-enabling interrupts after an interrupt exception

You must take care when re-enabling interrupts (for example at the end of an interrupt
routine or with a reentrant interrupt handler). You must ensure that the original source
of the interrupt has been removed before interrupts are enabled again on the ARM9E-S
core. If you cannot guarantee this, the ARM9E-S core might retake the interrupt
exception prematurely. When considering the timing relation of removing the source of
interrupt and re-enabling interrupts on the ARM9E-S core, you must take into account
the pipelined nature of the ARM9E-S core and the memory system to which it is
connected. For example, the instruction that causes the removal of the interrupt request
(that is, de-assertion of nFIQ or nIRQ) typically does not take effect until after the
Memory stage of that instruction. The instruction that re-enables interrupts on the
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 4-3

Interrupts
ARM9E-S core can cause the ARM9E-S core to be sensitive to interrupts as early as the
Execute stage of that instruction.For example, consider the following instruction
sequence:

STR r0, [r1] ;Write to interrupt controller, clearing interrupt
SUBS pc, r14, #4 ;Return from interrupt routine

The execution of this code sequence is shown in Figure 4-1.

Figure 4-1 Retaking the FIQ exception

In Figure 4-1, the STR to the interrupt controller does not cause the deassertion of the
nFIQ input until cycle 4. The SUBS instruction causes the ARM9E-S core to be sensitive
to interrupts during cycle 3.

Because of this timing relationship, the ARM9E-S core retakes the FIQ exception in
this example.The FIQDIS (and similarly IRQDIS) output from the ARM9E-S core
indicates when the ARM9E-S core is sensitive to the state of the nFIQ (nIRQ) input (0
for sensitive, 1 for insensitive). If nFIQ is asserted in the same cycle that FIQDIS is
LOW, the ARM9E-S core takes the FIQ exception in a later cycle, even if the nFIQ
input is subsequently deasserted.There are several approaches that you can adopt to
ensure that interrupts are not enabled too early on the ARM9E-S core. The best
approach is highly dependent on the overall system, and can be a combination of
hardware and software.

Example approaches are:

• Analyze the system and ensure enough instructions separate the instruction that
removes the interrupt and the instruction that re-enables interrupts on the
ARM9E-S core.

• Have a software polling mechanism that reads back a status bit from the system
interrupt controller until it indicates that the interrupt has been removed before
re-enabling interrupts.

CLK

nFIQ

FIQDIS

STR r0, [r1]

SUBS pc, r14, #4

ARM processor pipeline

ARM processor pipeline

MemoryExecute WritebackDecode

MemoryExecute WritebackDecode

MemoryExecute WritebackDecode

Cycle 1 Cycle 2 Cycle 3 Cycle 4
4-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Interrupts
• Have a hardware system that stalls the ARM9E-S core until the interrupt has been
removed.

4.2.4 Interrupt registers

Before use, the nFIQ and nIRQ inputs are registered internally to the ARM9E-S core.
To improve interrupt latency, the registers are not conditioned by CLKEN, and run
freely, off the system clock, CLK. Internally, the ARM9E-S core can use the registered
nFIQ or nIRQ status to prepare for interrupt entry, even if the rest of the core is being
waited by CLKEN. The registered interrupt signals can only update if CLK is running.
Because of this, the best interrupt latency can only be achieved if CLK is not stopped.
This requirement is counteracted by power saving features of a system (for instance,
stopping CLK while waiting for a slow memory device, or a power-down mode where
CLK is stopped). In systems like this, you can still achieve the best interrupt latency if
you replace the final disabled CLK cycle with one waited (CLKEN = 0) cycle.

Figure 4-2 shows a system where CLK is stopped by external clock-gating for a number
of cycles.

Figure 4-2 Stopping CLK for power saving

Figure 4-3 shows a system which achieves most of the power saving benefits of the
system shown in Figure 4-2, while at the same time achieving best interrupt latency.

Figure 4-3 Using CLK and CLKEN for best interrupt latency

The system shown in Figure 4-3 combines CLK stopping and CLKEN waiting for best
power and interrupt latency performance.

CLK

CLKEN

CLK

CLKEN
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 4-5

Interrupts
4.3 Maximum interrupt latency

The processor samples the interrupt input pins on the rising-edge of the system clock,
CLK. The sampled signal is examined and can cause an interrupt in the following cases:

• Whenever a new instruction is scheduled to enter the Execute stage of the
pipeline.

• Whenever a new instruction is in the Execute stage for the first cycle of its
execution. Here cycle refers to CLK cycles with CLKEN HIGH.

• Whenever a coprocessor instruction is being busy waited in the Execute stage.

• Whenever a new instruction which interlocked in the Execute stage has just
progressed to its first active Execute cycle.

If the sampled signal is asserted at the same time as a multicycle instruction has started
its second or later cycle of execution, the interrupt exception entry does not start until
the instruction has completed. The worst-case interrupt latency occurs when the longest
possible LDM instruction incurs a Data Abort. The processor must enter the Data Abort
mode before taking the interrupt so that the interrupt exception exit can occur correctly.
This causes a worst-case latency of 24 cycles:

• The longest LDM instruction is one that loads all of the registers, including the PC.
Counting the first Execute cycle as 1, the LDM takes 16 cycles.

• The last word to be transferred by the LDM is transferred in cycle 17, and the abort
status for the transfer is returned in this cycle.

• If a Data Abort happens, the processor detects this in cycle 18 and prepares for
the Data Abort exception entry in cycle 19.

• Cycles 20 and 21 are the Fetch and Decode stages of the Data Abort entry
respectively.

• During cycle 22, the processor prepares for FIQ entry, issuing Fetch and Decode
cycles in cycles 23 and 24.

• Therefore, the first instruction in the FIQ routine enters the Execute stage of the
pipeline in stage 25, giving a worst-case latency of 24 cycles.
4-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Interrupts
4.4 Minimum interrupt latency

The minimum latency for FIQ or IRQ is the shortest time the request can be sampled
by the input register (one cycle), plus the exception entry time (three cycles). The first
interrupt instruction enters the Execute pipeline stage four cycles after the interrupt is
asserted.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 4-7

Interrupts
4-8 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Chapter 5
Coprocessor Interface

This chapter describes the ARM9E-S coprocessor interface. It contains the following
sections:

• About the coprocessor interface on page 5-2

• LDC/STC on page 5-4

• MCR/MRC on page 5-8

• MCRR/MRRC on page 5-9

• Interlocked MCR on page 5-10

• Interlocked MCRR on page 5-11

• CDP on page 5-12

• Privileged instructions on page 5-14

• Busy-waiting and interrupts on page 5-15

• Coprocessor 15 MCRs on page 5-16

• Connecting coprocessors on page 5-17.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 5-1

Coprocessor Interface
5.1 About the coprocessor interface

The ARM9E-S core supports the connection of coprocessors. Coprocessors determine
the instructions they must execute using a pipeline follower in the coprocessor. As each
instruction arrives from memory, it enters both the ARM pipeline and the coprocessor
pipeline. The coprocessor determines when an instruction is being fetched by the
ARM9E-S core, so that the instruction can be loaded into the coprocessor, and the
pipeline follower advanced.

The coprocessor can be run either in step with the ARM9E-S pipeline, or one cycle
behind, depending on the timing priorities. The implications of the two approaches are
discussed in:

• Coprocessor pipeline operates in step with the ARM9E-S core

• Coprocessor pipeline one cycle behind the ARM9E-S core.

5.1.1 Coprocessor pipeline operates in step with the ARM9E-S core

In this case, the pipeline follower inside the coprocessor matches that of the ARM9E-S
core exactly. This complicates the timing of key signals such as the INSTR and
CLKEN inputs, because these now become more heavily loaded and therefore incur
more delay. For this reason, this method is only recommended for tightly integrated
coprocessors such as CP15, the system coprocessor.

5.1.2 Coprocessor pipeline one cycle behind the ARM9E-S core

This method is recommended for external coprocessors. A coprocessor interface block
pipelines the instruction and control signals so that the loading is reduced on these
critical signals. This means that the pipeline in the coprocessor operates one cycle
behind the ARM9E-S pipeline. The disadvantage of this is that outputs of the
coprocessor are still expected in the correct pipeline stage, as seen from the ARM9E-S
core. The most critical signal in this situation is likely to be CHSD[1:0], the
coprocessor decode handshake signal. This must return the availability of the
coprocessor by the end of the decode cycle, as seen by the ARM9E-S core. This is
equivalent to the fetch cycle of the coprocessor pipeline, and therefore there is not much
time to generate this signal. This means that the external coprocessor interface might
have to insert wait states for external coprocessor accesses.

Note
 CHSD[1:0] can be held in WAIT because it is ignored for CP14 (internal to the
ARM9E-S core instructions).

There are three classes of coprocessor instructions:

• LDC/STC
5-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Coprocessor Interface
• MCR/MRC

• CDP.

Examples of how a coprocessor must execute these instruction classes are given in:

• LDC/STC on page 5-4

• MCR/MRC on page 5-8

• Interlocked MCR on page 5-10

• CDP on page 5-12.

Note
 For the sake of clarity, all timing diagrams assume a system where the coprocessor
pipeline operates in step with the ARM9E-S core.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 5-3

Coprocessor Interface
5.2 LDC/STC

The number of words transferred is determined by how the coprocessor drives the
CHSD[1:0] and CHSE[1:0] buses. In the example ARM9E-S core LDC/STC cycle
timing shown in Figure 5-1, four words of data are transferred.

Figure 5-1 ARM9E-S core LDC/STC cycle timing

As with all other instructions, the ARM9E-S core performs the main decode using the
rising edge of the clock during the Decode stage. From this, the core commits to
executing the instruction, and so performs an instruction fetch. The coprocessor
instruction pipeline keeps in step with the ARM9E-S core by monitoring PADV.

CLK

Memory
Execute

(GO)Decode Write

PADV

Execute
(GO)

Execute
(GO)

Execute
(LAST)

ARM processor pipeline

A A+4 A+8 A+C

GO GO LAST Ignored

GO

IKILL

Coproc CPDOUT[31:0]
STC

INSTR[31:0]

PASS

LATECANCEL

DnMREQ

DMORE

Coproc CPDIN[31:0]
LDC

CHSD[1:0]

CHSE[1:0]

DA[31:0]
5-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Coprocessor Interface
At the rising edge of CLK, if CLKEN is HIGH, and PADV is HIGH, an instruction
fetch has been requested. In ARM state INSTR[31:0] contains the fetched instruction
on the next rising edge of the clock, when CLKEN is HIGH. This means that:

• the fetched instruction must be sampled

• the last instruction fetched must enter the Decode stage of the coprocessor
pipeline

• the instruction in the Decode stage of the coprocessor pipeline must enter its
Execute stage.

In all other cases, the ARM9E-S pipeline is stalled, and the coprocessor pipeline must
not advance.

Figure 5-2 shows the ARM9E-S coprocessor clocking signals, indicating when the
coprocessor pipeline must advance its state. In this timing diagram, Coproc clock shows
the effective clock applied to the pipeline follower in the coprocessor. It is derived such
that the coprocessor state must only advance on rising CLK edges when CLKEN is
HIGH. The method of implementing this is dependent on the design style used, such as
clock gating or register recirculating.

For efficient coprocessor design, an unmodified version of CLK must be applied to the
Execution stage of the coprocessor. This enables the coprocessor to continue executing
an instruction even when the ARM9E-S pipeline is stalled.

Figure 5-2 ARM9E-S coprocessor clocking

During the Execute stage, the condition codes are compared with the flags to determine
whether the instruction really executes or not. The output PASS is asserted (HIGH) if
the instruction in the Execute stage of the coprocessor pipeline:

• is a coprocessor instruction

• has passed its condition codes.

If a coprocessor instruction busy-waits, PASS is asserted on every cycle until the
coprocessor instruction is executed. If an interrupt or debug request occurs during
busy-waiting, PASS is driven LOW, and the coprocessor stops execution of the
coprocessor instruction.

CLK

CLKEN

Coproc
clock
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 5-5

Coprocessor Interface
A further output, LATECANCEL, cancels a coprocessor instruction when, for
example, the instruction preceding it caused a Data Abort, or a previous instruction
caused a watchpoint. LATECANCEL can be asserted even if there is no coprocessor
instruction being executed. For coprocessor instructions, LATECANCEL is valid on
the rising edge of CLK on the cycle that follows the first Execute cycle of the
coprocessor instruction. See CDP on page 5-12 for an example of LATECANCEL
behavior.

On the rising edge of CLK, the ARM9E-S core examines the coprocessor handshake
signals CHSD[1:0] or CHSE[1:0]:

• If a new instruction is entering the Execute stage in the next cycle, the core
examines CHSD[1:0].

• If the currently executing coprocessor instruction requires another execute cycle,
the core examines CHSE[1:0].

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor
instruction, the handshake signals indicate the ABSENT state. In this
case, the ARM9E-S core takes the undefined instruction trap.

WAIT If there is a coprocessor attached that can handle the instruction, but not
immediately, the coprocessor handshake signals are driven to indicate
that the ARM9E-S processor core must stall until the coprocessor can
catch up. This is known as the busy-wait condition. In this case, the
ARM9E-S core loops in an idle state waiting for CHSE[1:0] to be driven
to another state, or for an interrupt to occur.

If CHSE[1:0] changes to ABSENT, the undefined instruction trap is
taken. If CHSE[1:0] changes to GO or LAST, the instruction proceeds.

If an interrupt occurs, the ARM9E-S core is forced out of the busy-wait
state. This is indicated to the coprocessor by the PASS signal going LOW.
The instruction is restarted later and so the coprocessor must not commit
to the instruction (it must not change any of the coprocessor state) until it
has seen PASS HIGH, when the handshake signals indicate the GO or
LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction
immediately, and that it requires another cycle of execution. Both the
ARM9E-S core and the coprocessor must also consider the state of the
PASS signal before actually committing to the instruction. For an LDC or
STC instruction, the coprocessor instruction drives the handshake signals
with GO when two or more words still have to be transferred. When only
one further word is to be transferred, the coprocessor drives the
5-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Coprocessor Interface
handshake signals with LAST. During the Execute stage, the ARM9E-S
core outputs the address for the LDC or STC. Also in this cycle, DnMREQ
is driven LOW, indicating to the memory system that a memory access is
required at the data end of the device. The timing for the data on
RDATA[31:0] for an LDC and WDATA[31:0] for an STC is shown in
Figure 4-1 on page 4-4.

LAST An LDC or STC can be used for more than one item of data. If this is the
case, possibly after busy waiting, the coprocessor drives the coprocessor
handshake signals with a number of GO states, and in the penultimate
cycle drives LAST (LAST indicating that the next transfer is the final
one). If there is only one transfer, the sequence is
[WAIT,[WAIT,...]],LAST.

5.2.1 Coprocessor handshake encoding

Table 5-1 shows how the handshake signals CHSD[1:0] and CHSE[1:0] are encoded.

Table 5-1 Handshake signals

Handshake
signal

CHSD[1:0],
CHSE[1:0]

ABSENT 10

WAIT 00

GO 01

LAST 11
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 5-7

Coprocessor Interface
5.3 MCR/MRC

MCR and MRC cycles look very similar to STC or LDC. An example is shown in Figure 5-3.

Figure 5-3 ARM9E-S core MCR or MRC transfer timing

First PADV is driven HIGH to denote that the instruction on INSTR[31:0] is entering
the Decode stage of the pipeline. This causes the coprocessor to decode the new
instruction and drive CHSD[1:0] as required.

In the next cycle PADV is driven HIGH to denote that the instruction has now been
issued to the Execute stage. If the condition codes pass, and the instruction is to be
executed, the PASS signal is driven HIGH and the CHSD[1:0] handshake bus is
examined by the core (it is ignored in all other cases).

For any successive Execute cycles the CHSE[1:0] handshake bus is examined. When
the LAST condition is observed, the instruction is committed. In the case of an MCR, the
WDATA[31:0] bus is driven with the register data. In the case of an MRC, RDATA[31:0]
is sampled at the end of the ARM9E-S Memory stage and written to the destination
register during the next cycle.

Ignored

LAST

CLK

WDATA[31:0]
(MCR)

INSTR[31:0]

PADV

RDATA[31:0]
(MRC)

Execute
(GO)Decode

CHSD[1:0]

CHSE[1:0]

Memory
(GO)

Write
(LAST)

ARM processor pipeline

PASS

MCR/MRC
5-8 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Coprocessor Interface
5.4 MCRR/MRRC

MCRR and MRRC cycles look very similar to STC or LDC. An example is shown in Figure 5-4.

Figure 5-4 ARM9E-S core MCRR or MRRC transfer timing

First PADV is driven HIGH to denote that the instruction on INSTR[31:0] is entering
the Decode stage of the pipeline. This causes the coprocessor to decode the new
instruction and drive CHSD[1:0] as required.

In the next cycle PADV is driven HIGH to denote that the instruction has now been
issued to the Execute stage. If the condition codes pass, and the instruction is to be
executed, the PASS signal is driven HIGH and the CHSD[1:0] handshake bus is
examined by the core (it is ignored in all other cases).

For any successive Execute cycles the CHSE[1:0] handshake bus is examined. When
the LAST condition is observed, the instruction proceeds to its final Execute cycle. In
the case of an MCRR, the WDATA[31:0] bus is driven with the first register data during
the second Execute cycle, and the second register data in the Memory cycle. In the case
of an MRRC, RDATA[31:0] is sampled at the end of the second Execute and first Memory
cycles and written to the destination registers during the next cycle.

CLK

Execute
(GO)Decode

Execute
(LAST)

Memory
(LAST)

ARM processor pipeline

MCRR/MRRC

Write
(LAST)

LAST

GO

WDATA[31:0]
(MCRR)

RDATA[31:0]
(MRRC)

CHSD[1:0]

CHSE[1:0]

PASS

Ignored

Data1 (Rd) Data2 (Rn)

Data1 Data2

INSTR[31:0]

PADV
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 5-9

Coprocessor Interface
5.5 Interlocked MCR

If the data for an MCR operation is not available inside the ARM9E-S pipeline during its
first Decode cycle, the ARM9E-S pipeline interlocks for one or more cycles until the
data is available. An example of this is where the register being transferred is the
destination from a preceding LDR instruction. In this situation the MCR instruction enters
the Decode stage of the coprocessor pipeline, and remains there until it can enter the
Execute stage.

Note
 The CHSD must return its value in the second cycle (not interlocked).

Figure 5-5 gives an example of an interlocked MCR.

Figure 5-5 ARM9E-S core interlocked MCR

CLK

INSTR[31:0]

PADV

Execute
(WAIT)Decode Memory WriteARM processor pipeline

MCR

Execute
(LAST)

Decode
(interlock)

Ignored

WAIT

WDATA[31:0]
(MCR)

RDATA[31:0]
(MRC)

CHSD[1:0]

CHSE[1:0]

PASS

LATECANCEL

WAIT

LAST
5-10 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Coprocessor Interface
5.6 Interlocked MCRR

If the data for an MCRR operation is not available inside the ARM9E-S pipeline during its
first Decode cycle, the ARM9E-S pipeline interlocks for one or more cycles until the
data is available. An example of this is where the register being transferred is the
destination from a preceding LDR instruction. In this situation the MCRR instruction enters
the Decode stage of the coprocessor pipeline, and remains there until it can enter the
Execute stage.

Figure 5-6 gives an example of an interlocked MCRR.

Figure 5-6 ARM9E-S core interlocked MCRR

CLK

Execute
(GO)Decode Memory WriteARM processor pipeline

Execute
(LAST)

Decode
(interlock)

Ignored

GO (ignored)

WDATA[31:0]
(MCRR)

RDATA[31:0]
(MRRC)

CHSD[1:0]

CHSE[1:0]

PASS

LATECANCEL

GO

LAST

Data1 (Rd) Data2 (Rn)

Data1 Data2

INSTR[31:0]

PADV

MCR
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 5-11

Coprocessor Interface
5.7 CDP

CDP instructions normally execute in a single cycle. Like all the previous cycles, PADV
is driven HIGH to signal when an instruction is entering the Decode stage and again
when it reaches the Execute stage of the pipeline:

• if the coprocessor can accept the instruction for execution, the PASS signal is
driven HIGH during the Execute cycle

• if the coprocessor can execute the instruction immediately it drives CHSD[1:0]
with LAST

• if the instruction requires a busy-wait cycle, the coprocessor drives CHSD[1:0]
with WAIT and then CHSE[1:0] with LAST.

Figure 5-7 shows a CDP which is canceled because of the previous instruction causing a
Data Abort.

Figure 5-7 ARM9E-S core late-canceled CDP

CLK

INSTR[31:0]

Memory
(latecanceled)

ExecuteCDP: Coprocessor pipeline

CPRT

Decode

ExecuteCDP: ARM processor pipeline Decode

Exception
entry start

MemoryLDR with Data Abort Exception
continues

Execute

Ignored

LASTCHSD[1:0]

CHSE[1:0]

PASS

LATECANCEL

DABORT

PADV
5-12 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Coprocessor Interface
The CDP instruction enters the Execute stage of the pipeline and is signaled to execute
by PASS. In the following cycle LATECANCEL is asserted. This causes the
coprocessor to terminate execution of the CDP instruction and prevents the CDP
instruction from causing state changes to the coprocessor.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 5-13

Coprocessor Interface
5.8 Privileged instructions

The coprocessor might restrict certain instructions for use in privileged modes only. To
do this, the coprocessor has to track the InTRANS output. Figure 5-8 shows how
InTRANS changes after a mode change.

Figure 5-8 ARM9E-S core privileged instructions

The first two CHSD responses are ignored by the ARM9E-S core because it is only the
final CHSD response, as the instruction moves from Decode into Execute, that counts.
This enables the coprocessor to change its response as InTRANS/InM changes.

CLK

CPRT

ExecuteCDP: ARM processor pipeline Decode

Execute
(Cycle 3)

Execute
(Cycle 2)

Mode change MemoryExecute Write

Decode Decode Memory Write

Ignored

LASTCHSD[1:0]

CHSE[1:0]

PASS

LATECANCEL

InTRANS
/InM[4:0] Old Mode New Mode

IgnoredIgnored

INSTR[31:0]

PADV
5-14 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Coprocessor Interface
5.9 Busy-waiting and interrupts

The coprocessor is permitted to stall, or busy-wait, the processor during the execution
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the Decode stage instruction
drives WAIT onto CHSD[1:0]. When the instruction concerned enters the Execute
stage of the pipeline the coprocessor can drive WAIT onto CHSE[1:0] for as many
cycles as necessary to keep the instruction in the busy-wait loop.

For interrupt latency reasons, the coprocessor can be interrupted while busy-waiting,
causing the instruction to be abandoned. Abandoning execution is done through PASS.
The coprocessor must monitor the state of PASS during every busy-wait cycle. If it is
HIGH, the instruction must still be executed. If it is LOW, the instruction must be
abandoned. Figure 5-9 shows a busy-waited coprocessor instruction being abandoned
because of an interrupt.

Figure 5-9 ARM9E-S core busy waiting and interrupts

CLK

INSTR[31:0]
Instr

ARM processor pipeline Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT)

Execute Execute
Interrupted

Exception
Entry

Decode Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT)

Coprocessor pipeline

Ignored

CHSD[1:0]

CHSE[1:0]

PASS

LATECANCEL

WAIT

WAIT WAIT Ignored

PADV

Aban-
doned
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 5-15

Coprocessor Interface
5.10 Coprocessor 15 MCRs

Coprocessor 15 is typically reserved for use as a system control coprocessor. For an MCR
to coprocessor 15, it is possible to transfer the coprocessor data to the coprocessor on
the IA and DA buses. To do this the coprocessor must drive GO on the coprocessor
handshake signals for a number of cycles. For each cycle that the coprocessor responds
with GO on the handshake signals, the coprocessor data is driven onto IA and DA as
shown in Figure 5-10.

Figure 5-10 ARM9E-S core coprocessor 15 MCRs

CLK

INSTR[31:0]

MCR

ARM processor pipeline Execute
(GO)

Execute
(GO)

Execute
(LAST)

Decode Memory Write

Coproc Data

Coproc Data

Coproc Data

Ignored

CHSD[1:0]

CHSE[1:0]

PASS

LATECANCEL

GO

GO LAST

WDATA[31:0]
(MCR)

IA[31:1]

DA[31:0]

Instr Instr + 4

DnMREQ

DSEQ

PADV
5-16 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Coprocessor Interface
5.11 Connecting coprocessors

A coprocessor in an ARM9E-S core system requires 32-bit connections to:

• data from memory (instruction stream and LDC)

• write data from the ARM9E-S core (MCR)

• read data to the ARM9E-S core (MRC).

5.11.1 Connecting a single coprocessor

An example of how to connect a coprocessor into an ARM9E-S core system is shown
in Figure 5-11.

Figure 5-11 Coprocessor connections

The logic for Figure 5-11 is as follows:

on RISING CLK
asel = not (DnMREQ and DSEQ) and (not DnRW)
bsel = (not DnMREQ) and (not PASS)
csel = DnMREQ and DSEQ

1

0

1 0

ARM9E-S

Coprocessor

Memory
system

RDATA

WDATA

asel

csel

C
P

D
O

U
T

C
P

D
IN

0

1

bsel
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 5-17

Coprocessor Interface
Note
 The RDATA enable term (asel) is specially constructed to select the coprocessor output
data during MRC and STC operations. This is to enable the connection of the ETM module
to the ARM9E-S core RDATA and WDATA buses while still allowing tracing of MRC
and STC data.

5.11.2 Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as
shown in Table 5-2.

You must also multiplex the output data from the coprocessors.

The handshaking arrangement for a two-coprocessor system is shown in Example 5-1.

Example 5-1 Handshaking arrangements for two coprocessors

In the case of two coprocessors that have handshaking signals CHSD1, and CHSE1,
and CHSD2, and CHSE2, respectively, the following connections are made:

ARM9E-S core CP1 CP2
CHSD[1] <= CHSD1[1] AND CHSD2[1]
CHSD[0] <= CHSD1[0] OR CHSD2[0]
CHSE[1] <= CHSE1[1] AND CHSE2[1]
CHSE[0] <= CHSE1[0] OR CHSE2[0]

Table 5-2 Handshake signal connections

Signal Connection

PASS, LATECANCEL Connect these signals to all coprocessors present in the system.

CHSD, CHSE Combine the individual bit 1 of CHSD, and CHSE by ANDing.

Combine the individual bit 0 of CHSD, and CHSE by ORing.

Connect the CHSD, and CHSE inputs to the ARM9E-S core.
5-18 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Coprocessor Interface
5.11.3 No external coprocessor

If you are implementing a system that does not include any external coprocessors, you
must tie both CHSD and CHSE to 10 (ABSENT). This indicates that no external
coprocessors are present in the system. If any coprocessor instructions are received,
they cause the processor to take the undefined instruction trap, allowing the coprocessor
instructions to be emulated in software if required.

The coprocessor-specific outputs from the ARM9E-S core must be left unconnected:

• PASS
• LATECANCEL.

5.11.4 Undefined instructions

The ARM9E-S core implements full ARMv5TE undefined instruction handling. This
means that any instruction defined in the ARM Architecture Reference Manual as
UNDEFINED, automatically causes the ARM9E-S core to take the undefined instruction
trap. Any coprocessor instruction that is not accepted by a coprocessor also results in
the ARM9E-S core taking the undefined instruction trap.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 5-19

Coprocessor Interface
5-20 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Chapter 6
Device Reset

This chapter describes the ARM9E-S core reset behavior. It contains the following
sections:

• About device reset on page 6-2

• Reset modes on page 6-3

• ARM9E-S core behavior on exit from reset on page 6-5.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 6-1

Device Reset
6.1 About device reset

This section describes the ARM9E-S core reset signals and how you must use them for
correct operation of the device.

The ARM9E-S core has two reset inputs:

nRESET The nRESET signal is the main CPU reset that initializes the majority of
the ARM9E-S logic.

DBGnTRST The DBGnTRST signal is the debug logic reset that you can use to reset
the ARM9E-S TAP controller and the EmbeddedICE-RT unit.

Both nRESET and DBGnTRST are active LOW signals that asynchronously reset
logic in the ARM9E-S core. You must take care when designing the logic to drive these
reset signals.
6-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Device Reset
6.2 Reset modes

Two reset signals are present in the ARM9E-S core design to enable you to reset
different parts of the design independently. A description of the reset signaling
combinations and possible applications is shown in Table 6-1.

6.2.1 Full system reset

You must apply full system reset to the ARM9E-S core when power is first applied to
the system. In this case, the leading (falling) edge of the reset signals (nRESET and
DBGnTRST) do not have to be synchronous to CLK. The trailing (rising) edge of the
reset signals must be set up and held about the rising edge of the clock. You must do this
to ensure that the entire system leaves reset in a predictable manner. This is particularly
important in multi-processor systems. Figure 6-1 shows the application of system reset.

Figure 6-1 System reset

It is recommended that you assert the reset signals for at least three CLK cycles to
ensure correct reset behavior. Adopting a three-cycle reset eases the integration of other
ARM parts into the system, for example, ARM9TDMI-based designs.

Table 6-1 Reset modes

Reset mode nRESET DBGnTRST Application

Full system reset 0 0 Reset at power up, full system
reset.

Core reset 0 1 Reset of CPU core only, watchdog
reset.

EmbeddedICE-RT reset 1 0 Reset of EmbeddedICE-RT
circuitry.

Normal 1 1 No reset. Normal run mode.

CLK

nRESET

DBGnTRST
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 6-3

Device Reset
6.2.2 Core reset

Core reset initializes the majority of the ARM9E-S CPU, excluding the ARM9E-S TAP
controller and the EmbeddedICE-RT unit. Core reset is typically used for resetting a
system that has been operating for some time, for example, watchdog reset.

Sometimes you might not want to reset the EmbeddedICE-RT unit when resetting the
rest of the ARM9E-S core, for example, if EmbeddedICE-RT has been configured to
breakpoint (or capture) fetches from the reset vector.

For core reset, both the leading and trailing edges of nRESET must be set up and held
about the rising edge of CLK. This ensures that there are no metastability issues
between the ARM9E-S core and the EmbeddedICE-RT unit.

6.2.3 EmbeddedICE-RT reset

EmbeddedICE-RT reset initializes the state of the ARM9E-S TAP controller and the
EmbeddedICE-RT unit. EmbeddedICE-RT reset is typically used by the Multi-ICE
module for hot connection of a debugger to a system.

EmbeddedICE-RT reset enables initialization of the EmbeddedICE-RT unit without
affecting the normal operation of the ARM9E-S core.

For EmbeddedICE-RT reset, both the leading and trailing edges of DBGnTRST must
be set up and held about the rising edge of CLK. This ensures that there are no
metastability issues between the ARM9E-S core and the EmbeddedICE-RT unit.

See Clocks and synchronization on page 8-15 for more details of synchronization
between the Multi-ICE and ARM9E-S core.

6.2.4 Normal operation

During normal operation, neither CPU reset nor EmbeddedICE-RT reset is asserted.
6-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Device Reset
6.3 ARM9E-S core behavior on exit from reset

When nRESET is driven LOW, the currently executing instruction terminates
abnormally. InMREQ, ISEQ, DnMREQ, DSEQ, and DMORE change
asynchronously to indicate an internal cycle. When nRESET is driven HIGH, the
ARM9E-S core starts requesting instructions from memory again when the nRESET
signal has been registered, and the first memory access starts two cycles later. The
nRESET signal is sampled on the rising-edge of CLK.

The behavior of the memory interface coming out of reset is shown in Figure 6-2.

Figure 6-2 ARM9E-S core behavior on exit from reset

CLK

InMREQ

IA[31:1]

INSTR[31:0]

0x0

DnMREQ

DSEQ

DMORE

DnRW

M WD EF

nRESET

ISEQ

DA[31:0]

0x4 0x8
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 6-5

Device Reset
6-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Chapter 7
Instruction Cycle Times

This chapter gives the instruction cycle timings and illustrates interlock conditions
present in the ARM9E-S core design. It contains the following sections:

• Instruction cycle count summary on page 7-3

• Introduction to detailed instruction cycle timings on page 7-7

• Branch and ARM branch with link on page 7-8

• Thumb branch with link on page 7-9

• Branch and exchange on page 7-10

• Thumb Branch, Link, and Exchange <immediate> on page 7-11

• Data operations on page 7-12

• MRS operations on page 7-14

• MSR operations on page 7-15

• Multiply and multiply accumulate on page 7-16

• QADD, QDADD, QSUB, and QDSUB on page 7-20

• Load register on page 7-21

• Store register on page 7-26

• Load multiple registers on page 7-27

• Store multiple registers on page 7-30

• Load double register on page 7-31
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-1

Instruction Cycle Times
• Store double register on page 7-32

• Data swap on page 7-33

• PLD on page 7-35

• Software interrupt, undefined instruction, and exception entry on page 7-36

• Coprocessor data processing operation on page 7-37

• Load coprocessor register, from memory on page 7-38

• Store coprocessor register, to memory on page 7-40

• Coprocessor register transfer, to ARM on page 7-42

• Coprocessor register transfer, from ARM register on page 7-43

• Double coprocessor register transfer, to ARM register on page 7-44

• Double coprocessor register transfer, from ARM register on page 7-45

• Coprocessor absent on page 7-46

• Unexecuted instructions on page 7-48.
7-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.1 Instruction cycle count summary

Table 7-1 shows the key to the other tables in this chapter.

Table 7-2 summarizes the ARM9E-S instruction cycle counts and bus activity when
executing the ARM instruction set.

Table 7-1 Key to tables

Symbol Meaning

b The number of busy-wait states during coprocessor accesses

n The number of words transferred in an LDM/STM/LDC/STC

C Coprocessor register transfer cycle (C-cycle)

I Internal cycle (I-cycle

N Nonsequential cycle (N-cycle)

S Sequential cycle (S-cycle)

Table 7-2 ARM instruction cycle counts

Instruction Cycles
Instruction
bus

Data
bus

Comment

CLZ 1 1S 1I All cases.

Data Op 1 1S 1I Normal case, PC not destination.

Data Op 2 1S+1I 2I With register controlled shift, PC not
destination.

Data Op 3 2S+1N 3I PC destination register, arithmetic data output
(ADD, SUB, RSB, ADC, SBC).

Data Op 4 2S+1N+1I 4I PC destination register, logical data output
(RSC, ORR, EOR, MOV, BIC).

Data Op 4 2S+1N+1I 4I With operand shift, PC destination register.

LDR 1 1S 1N Normal case, not loading PC.

LDR 2 1S+1I 1N+1I Not loading PC and following instruction uses
loaded word (1 cycle load-use interlock).

LDR 2 1S+1I 1N+1I Not loading PC and shifted offset.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-3

Instruction Cycle Times
LDR 3 1S+2I 1N+2I Not loading PC and shifted offset and following
instruction uses loaded word (1-cycle load-use
interlock).

LDR 3 1S+2I 1N+2I Loaded byte, halfword, or unaligned word used
by following instruction (2-cycle load-use
interlock).

LDR 5 2S+2I+1N 1N+4I PC is destination register.

LDR 6 2S+3I+1N 1N+5I PC is destination register, scaled register offset.

LDRD 2 1S+1I 1N+1S Normal case.

LDRD 3 1S+2I 1N+1S+1I Last loaded word used by following instruction.

STR 1 1S 1N Normal case.

STR 2 1S+1I 1N+1I scaled offset.

STRD 2 1S+1I 1N+1S All cases.

LDM 2 1S+1I 1S+1I Loading 1 register, not the PC.

LDM n 1S+(n-1)I 1N+(n-1)S Loading n registers, n > 1, not loading the PC.

LDM n+1 1S+nI 1N+(n-1)S+1I Loading n registers, n > 1, not loading the PC,
last word loaded used by following instruction.

LDM n+4 2S+1N+(n+1)I 1N+(n-1)S+4I Loading n registers including the PC, n > 0.

LDM 5 2S+2I+1N 1N+4I Load PC.

STM 2 1S+1I 1N+1I Storing 1 register.

STM n 1S+(n-1)I 1N+(n-1)S Storing n registers, n > 1.

SWP 2 1S+1I 2N Normal case.

SWP 3 1S+2I 2N+1I Loaded word used by following instruction.

PLD 1 1S 1I All cases, DnSPEC asserted.

B, BL, BX, BLX 3 2S+1N 3I All cases.

SWI, Undefined 3 2S+1N 3I All cases.

Table 7-2 ARM instruction cycle counts (continued)

Instruction Cycles
Instruction
bus

Data
bus

Comment
7-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
Coprocessor absent b+4 2S+1N+1I+bI 4I+bI All cases.

CDP b+1 1S+bI (1+b)I All cases.

LDC, STC b+n 1S+(b+n-1)I bI+1N+(n-1)S All cases.

MCR b+1 1S+bI bI+1C All cases.

MCRR b+2 1S+(b+1)I bI+2C All cases.

MRC b+1 1S+bI bI+1C Normal case.

MRC b+2 1S+(b+1)I (b+1)I+1C Following instruction uses transferred data.

MRC (dest = PC) b+4 1S+(b+3)I (b+3)I+1C Destination is PC.

MRRC b+2 1S+(b+1)I bI+2C Normal case.

MRRC b+3 1S+(b+2)I (b+1)I+2C Following instruction uses last transferred data.

MRS 2 1S+1I 2I All cases.

MSR 1 1S 1I If only flags are updated (mask_f).

MSR 3 1S+2I 3I If any bits other than just the flags are updated
(all masks other than mask_f).

MUL, MLA 2 1S+1I 2I Normal case.

MUL, MLA 3 1S+2I 3I Following instruction uses the result in its first
Execute cycle or its first Memory cycle. Does
not apply to a multiply accumulate using result
for accumulate operand.

MULS, MLAS 4 1S+3I 4I All cases, sets flags.

QADD, QDADD,

QSUB, QDSUB

1 1S 1I Normal case.

QADD, QDADD,

QSUB, QDSUB

2 1S+1I 2I Following instruction uses the result in its first
Execute cycle.

SMULL, UMULL,

SMLAL, UMLAL

3 1S+2I 3I Normal case.

Table 7-2 ARM instruction cycle counts (continued)

Instruction Cycles
Instruction
bus

Data
bus

Comment
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-5

Instruction Cycle Times
SMULL, UMULL,

SMLAL, UMLAL

4 1S+3I 4I Following instruction uses RdHi result in its
first Execute cycle or its first Memory cycle.
Does not apply to a multiply accumulate using
result for accumulate operand.

SMULLS, UMULLS,

SMLALS, UMLALS

5 1S+4I 5I All cases, sets flags.

SMULxy, SMLAxy 1 1S 1I Normal case.

SMULxy, SMLAxy 2 1S+1I 2I Following instruction uses the result in its first
Execute or its first Memory cycle. Does not
apply to a multiply accumulate using result for
accumulate operand.

SMULWx, SMLAWx 1 1S 1I Normal case.

SMULWx, SMLAWx 2 1S+1I 2I Following instruction uses the result in its first
Execute or its first Memory cycle. Does not
apply to a multiply accumulate using result for
accumulate operand.

SMLALxy 2 1S+1I 2I Normal case.

SMLALxy 3 1S+2I 3I Following instruction uses RdHi result in its
first Execute cycle or its first Memory cycle.
Does not apply to a multiply accumulate using
result for accumulate operand.

Table 7-2 ARM instruction cycle counts (continued)

Instruction Cycles
Instruction
bus

Data
bus

Comment
7-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.2 Introduction to detailed instruction cycle timings

The pipelined architecture of the ARM9E-S core overlaps the execution of several
instructions in different pipeline stages. The tables in this section show the number of
cycles required by an instruction, when that instruction has reached the Execute stage
of the pipeline. The instruction cycle count is the number of cycles that an instruction
occupies the execute stage of the pipeline. The other pipeline stages (Fetch, Decode,
Memory, and Writeback) are only occupied for one cycle by any instruction (in this
model, interlock cycles are grouped in with the instruction generating the data that
creates the interlock condition, not the instruction dependent on the data).

The request, address, and control signals on both the instruction and data interfaces are
pipelined so that they are generated in the cycle before the one to which they apply, and
are shown as such in the following tables.

The instruction address, IA[31:1], is incremented for prefetching instructions in most
cases. The increment varies with the instruction length:

• 4 bytes in ARM state

• 2 bytes in Thumb state.

The letter i is used to indicate the instruction length.

Note
 All cycle counts in this chapter assume zero wait-state memory access. In a system
where CLKEN is used to add wait states, the cycle counts must be adjusted accordingly.

Table 7-3 shows the key to the cycle timing tables, Table 7-4 on page 7-8 to Table 7-36
on page 7-48.

Table 7-3 Key to cycle timing tables

Symbol Meaning

pc The address of the branch instruction.

pc’ The branch target address.

(pc’) The memory contents of that address.

i 4 when in ARM state, or 2 when in Thumb state.

- Indicates that the signal is not active, and therefore not valid in this cycle.

A blank entry in the table indicates that the status of the signal is not
determined by the instruction in that cycle. The status of the signal is
determined either by the preceding or succeeding instruction.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-7

Instruction Cycle Times
7.3 Branch and ARM branch with link

Any ARM or Thumb branch, and an ARM branch with link operation takes three
cycles:

1. During the first cycle, a branch instruction calculates the branch destination while
performing a prefetch from the current PC. This prefetch is performed in all case,
because by the time the decision to take the branch has been reached, it is already
too late to prevent the prefetch. If the previous instruction requested a data
memory access, the data is transferred in this cycle.

2. During the second cycle, the ARM9E-S core performs a fetch from the branch
destination. If the link bit is set, the return address to be stored in r14 is calculated.

3. During the third cycle, the ARM9E-S core performs a fetch from the destination
+ i, refilling the instruction pipeline.

Table 7-4 Branch and ARM branch with link cycle timings

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

1 pc’ N cycle (pc + 2i) - I cycle

2 pc’ + i S cycle (pc’) - I cycle -

3 pc’ + 2i S cycle (pc’ + i) - I cycle -

(pc’ + 2i) -
7-8 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.4 Thumb branch with link

A Thumb Branch with Link (BL) operation comprises two consecutive Thumb
instructions, and takes four cycles:

1. The first instruction acts as a simple data operation. It takes a single cycle to add
the PC to the upper part of the offset, and stores the result in r14. If the previous
instruction requested a data memory access, the data is transferred in this cycle.

2. The second instruction acts similarly to the ARM BL instruction over three cycles:

a. During the first cycle, the ARM9E-S core calculates the final branch target
address while performing a prefetch from the current PC.

b. During the second cycle, the ARM9E-S core performs a fetch from the
branch destination, while calculating the return address to be stored in r14.

c. During the third cycle, the ARM9E-S core performs a fetch from the
destination + 2, refilling the instruction pipeline.

Table 7-5 shows the cycle timings of the complete operation.

Table 7-5 Thumb branch with link cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

1 pc+3i S cycle (pc+i) - I cycle

2 pc’ N cycle (pc+3i) - I cycle -

3 pc’+i S cycle (pc’) - I cycle -

4 pc’+i S cycle (pc’+i) - I cycle -

(pc’+i) -
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-9

Instruction Cycle Times
7.5 Branch and exchange

A Branch and Exchange (BX), Branch, Link and Exchange register (BLX <register>), or
BLX <immediate> operation takes three cycles, and is similar to a Branch:

1. During the first cycle, the ARM9E-S core extracts the branch destination and the
new core state while performing a prefetch from the current PC. This prefetch is
performed in all cases, because by the time the decision to take the branch has
been reached, it is already too late to prevent the prefetch. In the case of BX and
BLX<register>, the branch destination new state comes from the register. For
BLX<immediate> the destination is calculated as a PC offset. The state is always
changed. If the previous instruction requested a memory access (and there is no
interlock in the case of BX, BLX <register>), the data is transferred in this cycle.

2. During the second cycle, the ARM9E-S core performs a fetch from the branch
destination, using the new instruction width, dependent on the state that has been
selected. If the link bit is set, the return address to be stored in r14 is calculated.

3. During the third cycle, the ARM9E-S core performs a fetch from the destination
+2 or +4 dependent on the new specified state, refilling the instruction pipeline.

Table 7-6 shows the cycle timings, where:

i’ Is the instruction width (4 when in ARM state, or 2 when in Thumb state),
before the BX/BLX instruction.

i’’ Is the instruction width (4 when in ARM state, or 2 when in Thumb state),
after the BX/BLX instruction.

t’ Is the state of the ITBIT signal before the BX/BLX instruction.

t’’ Is the state of the ITBIT signal after the BX/BLX instruction.

Table 7-6 Branch and exchange cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR ITBIT DA
DnMREQ,
DSEQ

RDATA/
WDATA

1 pc’ N cycle (pc + 2i’) t’’ - I cycle -

2 pc’ + i’’ S cycle (pc’) t’’ - I cycle -

3 pc’ + 2i’’ S cycle (pc’ + i’’) t’’ - I cycle -

(pc’ + 2i’’) -
7-10 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.6 Thumb Branch, Link, and Exchange <immediate>

A Thumb Branch, Link, and Exchange immediate (BLX <immediate>) operation is
similar to a Thumb BL operation. It comprises two consecutive Thumb instructions, and
takes four cycles:

1. The first instruction acts as a simple data operation. It takes a single cycle to add
the PC to the upper part of the offset, and stores the result in r14. If the previous
instruction requested a data memory access, the data is transferred in this cycle.

2. The second instruction acts similarly to the ARM BLX instruction:

a. During the first cycle, the ARM9E-S core calculates the final branch target
address while performing a prefetch from the current PC.

b. During the second cycle, the ARM9E-S core performs a fetch from the
branch destination, using the new instruction width, dependent on the state
that has been selected. The return address to be stored in r14 is calculated.

c. During the third cycle, the ARM9E-S core performs a fetch from the
destination + 4, refilling the instruction pipeline.

Table 7-7 shows the cycle timings of the complete operation.

Table 7-7 Thumb branch, link, and exchange cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR ITBIT DA
DnMREQ,
DSEQ

RDATA/
WDATA

1 pc+3i’ S cycle (pc+2i’) t’ - I cycle -

2 pc’ N cycle (pc+3i’) t’’ - I cycle -

3 pc’+i’’ S cycle (pc’) t’’ - I cycle -

4 pc’+2i’’ S cycle (pc’+i’’) t’’ - I cycle -

(pc’+2i’’) -
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-11

Instruction Cycle Times
7.7 Data operations

A normal data operation executes in a single execute cycle except where the shift is
determined by the contents of a register. A normal data operation requires up to two
operands, that are read from the register file onto the A and B buses.

The ALU combines the A bus operand with the (shifted) B bus operand according to the
operation specified in the instruction. The ARM9E-S core pipelines this result and
writes it into the destination register, when required. Compare and test operations do not
write a result as they only affect the status flags.

An instruction prefetch occurs at the same time as the data operation, and the PC is
incremented.

When a register specified shift is used, an additional execute cycle is required to read
the shifting register operand. The instruction prefetch occurs during this first cycle.

The PC can be one or more of the register operands. When the PC is the destination, the
external bus activity is affected. When the ARM9E-S core writes the result to the PC,
the contents of the instruction pipeline are invalidated, and the ARM9E-S core takes the
address for the next instruction prefetch from the ALU rather than the incremented
address. The ARM9E-S core refills the instruction pipeline before any further
instruction execution takes place. Exceptions are locked out while the pipeline is
refilling.

Note
 Shifted register with destination equals PC is not possible in Thumb state.

The data operation cycle timings are shown in Table 7-8.

Table 7-8 Data operation cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

Normal 1 pc+3i S cycle (pc+2i) - I cycle

(pc+3i) -

ADD, SUB,
RSB, ADC,
SBC, RSC, MOV
operationdest=pc

1 pc’ N cycle (pc+2i) - I cycle

2 pc’+ i S cycle (pc’) - I cycle -

3 pc’+2i S cycle (pc’+i) - I cycle -

(pc’+ 2i) -
7-12 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
shift(Rs) 1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i S cycle - - I cycle -

(pc+3i) -

shift or AND,
ORR, EOR,
MVN
operationdest=pc

1 pc+3i I cycle (pc+2i) - I cycle

2 pc’ N cycle - - I cycle -

3 pc’+i S cycle (pc’) - I cycle -

4 pc’+2i S cycle (pc’+i) - I cycle -

(pc’+2i) -

Table 7-8 Data operation cycle timing (continued)

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-13

Instruction Cycle Times
7.8 MRS operations

An MRS operation always takes two cycles to execute. The first cycle allows any pending
state changes to the PSR to be made. The second cycle passes the PSR register through
the ALU so that it can be written to the destination register.

Note
 The MRS instruction can only be executed when in ARM state.

Table 7-9 shows the MRS cycle timing.

Table 7-9 MRS cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i S cycle - - I cycle -

(pc+3i) -
7-14 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.9 MSR operations

An MSR operation takes one cycle to execute if it only updates the status flags of the
CPSR, and three cycles if it updates other parts of the PSR.

Note
 MSR instructions can only be executed in ARM state.

Table 7-10 shows the cycle timings for MSR operations.

Table 7-10 MSR cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

MSR flags 1 pc+3i S cycle (pc+2i) - I cycle

(pc+3i) -

MSR other 1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i I cycle - - I cycle -

3 pc+3i S cycle - - I cycle -

(pc+3i) -
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-15

Instruction Cycle Times
7.10 Multiply and multiply accumulate

The multiply instructions make use of special hardware that implements integer
multiplication. All cycles except the last are internal.

During the first (Execute) stage of a multiply instruction, the multiplier and
multiplicand operands are read onto the A and B buses, on which the multiplier unit is
connected. The first stage of the multiplier performs Booth recoding and partial product
summation, using 16 bits of the multiplier operand each cycle.

During the second (Memory) stage of a multiply instruction, the partial product result
from the Execute stage is added with an optional accumulate term (read onto the C bus)
and a possible feedback term from a previous multiply step for multiplications which
require additional cycles.

Note
 In Thumb state, MLAS operations are not possible. The Thumb equivalent of MULS is MUL.

7.10.1 Interlocks

The multiply unit in the ARM9E-S core operates in both the Execute and Memory stage
of the pipeline. Because of this, the multiplier result is not available until the end of the
Memory stage of the pipeline. If the following instruction requires the use of the
multiplier result, then it must be interlocked so that the correct value is available. This
applies to all instructions that require the multiply result for the first Execute cycle or
first Memory cycle of the instruction except for multiply accumulate instructions using
the previous multiply result as the accumulator operand.

As an example, the following sequence incurs a single-cycle interlock:

MUL r0, r1, r2
SUB r4, r0, r3

The following cycle also incurs a single-cycle interlock:

MLA r0, r1, r2, r3
STR r0, [r8]

The following example does not incur an interlock:

MLA r0, r1, r2, r0
MLA r0, r3, r4, r0
7-16 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
Table 7-11 shows the cycle timing for MUL and MLA instructions with and without
interlocks.

The MULS and MLAS instructions always take four cycles to execute, and cannot generate
interlocks in following instructions.

Table 7-12 shows the cycle timing for MULS and MLAS instructions.

Table 7-11 MUL and MLA cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

Normal 1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i S cycle - - I cycle -

(pc+3i) -

Interlock 1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i I cycle - - I cycle -

3 pc+3i S cycle - - I cycle -

(pc+3i) -

Table 7-12 MULS and MLAS cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i I cycle - - I cycle -

3 pc+3i I cycle - - I cycle -

4 pc+3i S cycle - - I cycle -

(pc+3i) -
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-17

Instruction Cycle Times
Table 7-13 shows the cycle timing for SMULL, UMULL, SMLAL, and UMLAL instructions with
and without interlocks.

The SMULLS, UMULLS, SMLALS, and UMLALS instructions always take five cycles to execute,
and cannot generate interlocks in following instructions.

Table 7-14 shows the cycle timing for the SMULLS, UMULLS, SMLALS, and UMLALS
instructions.

Table 7-13 SMULL, UMULL, SMLAL, and UMLAL cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

Normal 1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i I cycle - - I cycle -

3 pc+3i S cycle - - I cycle -

(pc+3i) -

Interlock 1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i I cycle - - I cycle -

3 pc+3i I cycle - - I cycle -

4 pc+3i S cycle - - I cycle -

(pc+3i) -

Table 7-14 SMULLS, UMULLS, SMLALS, and UMLALS cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i I cycle - - I cycle -

3 pc+3i I cycle - - I cycle -

4 pc+3i I cycle - - I cycle -

5 pc+3i S cycle - - I cycle -

(pc+3i) -
7-18 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
Table 7-15 shows the cycle timing for SMULxy, SMLAxy, SMULWy, and SMLAWy instructions
with and without interlocks.

Table 7-16 shows the cycle timing for SMLALxy instructions with and without interlocks.

Table 7-15 SMULxy, SMLAxy, SMULWy, and SMLAWy cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

Normal 1 pc+3i S cycle (pc+2i) - I cycle

b b (pc+3i) b -

Interlock 1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i S cycle - - I cycle -

(pc+3i) -

Table 7-16 SMLALxy cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

Normal 1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i S cycle - - I cycle -

(pc+3i) -

Interlock 1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i I cycle - - I cycle

3 pc+3i S cycle - - I cycle

(pc+3i) -
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-19

Instruction Cycle Times
7.11 QADD, QDADD, QSUB, and QDSUB

This class of instructions normally takes one cycle to execute and is only available in
ARM state.

7.11.1 Interlocks

The instructions in this class use both the Execute and Memory stages of the pipeline.
Because of this, the result of an instruction in this class is not available until the end of
the Memory stage of the pipeline. If a following instruction requires the use of the
result, then it must be interlocked so that the correct value is available. This applies to
all instructions that require the result for the first Execute cycle. Instructions that require
the result of a QADD or similar instruction for the first Memory cycle do not incur an
interlock.

As an example, the following sequence incurs a single-cycle interlock:

QADD r0, r1, r2
SUB r4, r0, r3

The following cycle does not incur a single-cycle interlock:

QDSUB r0, r1, r2
STR r0, [r8]

The following example does not incur an interlock:

QADD r0, r4, r5
MLA r0, r3, r4, r0

Table 7-17 shows the cycle timing for QADD, QDADD, QSUB, and QDSUB instructions with and
without interlocks.

Table 7-17 QADD, QDADD, QSUB, and QDSUB cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

Normal 1 pc+3i S cycle (pc+2i) - I cycle

(pc+3i) b -

Interlock 1 pc+3i I cycle (pc+2i) - I cycle

2 pc+3i S cycle - - I cycle

(pc+3i) -
7-20 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.12 Load register

A load register operation typically occupies the Execute stage for one cycle. There
might be a number of cycles before the loaded value is available for later instructions.
A load to the PC occupies the Execute stage for five cycles.

Note
 Destination equals PC is not possible in Thumb state.

7.12.1 Interlocks

The result of an aligned word load instruction is not available until the end of the
Memory stage of the pipeline. If the following instruction requires the use of this result
then it must be interlocked so that the correct value is available. This interlock is
referred to as a single-cycle load-use interlock.

The following example incurs a single-cycle interlock:

LDR r0, [r1]
ADD r2, r0, r3
ORR r4, r4, r5

The following example does not incur an interlock:

LDR r0, [r1]
ORR r4, r4, r5
ADD r2, r0, r3

Unaligned word loads, load byte (LDRB), and load halfword (LDRH) instructions use the
byte rotate unit in the Write stage of the pipeline. This introduces a two-cycle load-use
interlock, that can affect the two instructions immediately following the load
instruction.

The following example incurs a two-cycle interlock:

LDRB r0, [r1, #1]
ADD r2, r0, r3
ORR r4, r4, r5

The following example incurs a single-cycle interlock:

LDRB r0, [r1, #1]
ORR r4, r4, r5
ADD r2, r0, r3

When an interlock has been incurred for one instruction it does not have to be incurred
for a later instruction.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-21

Instruction Cycle Times
For example, the following sequence incurs a two-cycle interlock on the first ADD
instruction, but the second ADD does not incur any interlocks:

LDRB r0, [r1, #1]
ADD r2, r0, r3
ADD r4, r0, r5

A two-cycle interlock refers to the number of unwaited ARM9E-S core clock cycles to
which the interlock applies. If a multi-cycle instruction separates a load instruction and
the instruction using the result of the load, then no interlock can apply. The following
example does not incur an interlock:

LDRB r0, [r1]
MUL r6, r7, r8
ADD r4, r0, r5

There is no forwarding path from loaded data to the C read port of the register bank,
which is used for the store data of STR and STM instructions and for the accumulate
operand of multiply accumulate instructions. The result of a load must reach the Write
stage of the pipeline before it can be made available at the C read port, resulting in a
single-cycle load-use interlock from loaded data to the C read port.

The following example incurs a single-cycle interlock:

LDR r0, [r1]
STR r0, [r2]

The following example also incurs a single-cycle interlock:

LDR r0, [r1]
MLA r2, r3, r4, r0

The following example does not incur an interlock:

LDR r0, [r1]
ADD r6, r6, r3
STR r0, [r2]

Most interlock conditions are determined when the instruction being interlocked is still
in the Decode stage of the pipeline. Load multiple and Store multiple instructions can
incur a Decode stage interlock when the base register is not available because of a
previous instruction. Store multiple instructions can also incur an Execute stage
interlock when the first register to be stored is not available because of a previous
instruction. This is referred to as a second-cycle interlock.

The following example incurs a single-cycle interlock:

LDR r0, [r1]
STMIA r0, {r1-r2}
7-22 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
The following example incurs a second-cycle interlock:

LDR r0, [r1]
STMIA r2, {r0-r1}

A second-cycle interlock can be incurred on the first word of data stored by an STM
instruction or during the first cycle of a register controlled shift. The following example
does not incur an interlock:

LDR r3, [r1]
STMIA r0, {r2-r3}

Table 7-18 shows the cycle timing for basic load register operations, where:

s Represents the current mode-dependent value.

t Is either 0, when the T bit is specified in the instruction (for example LDRT)
or s at all other times.

Table 7-18 Load register operation cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

DnTRANS RDATA

Normal 1 pc+3i S cycle (pc+2i) da N cycle t

(pc+3i) (da)

Normal 1 pc+3i I cycle (pc+2i)

2 pc+3i S cycle - da N cycle t

(pc+3i) (da)

dest=pc 1 pc+3i I cycle (pc+2i) da N cycle t

2 pc+3i I cycle - - I cycle s (da)

3 pc’ N cycle - - I cycle s -

4 pc’+i S cycle (pc’) - I cycle s -

5 pc’+2i S cycle (pc’+i) - I cycle s -

(pc’+2i) -
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-23

Instruction Cycle Times
Note
 Destination equals PC is not possible in Thumb state.

Table 7-19 shows the cycle timing for load operations resulting in simple interlocks.

With more complicated interlock cases you cannot consider the load instruction in
isolation. This is because in these cases the load instruction has vacated the Execute
stage of the pipeline and a later instruction has occupied it.

Scaled
offset
dest=pc

1 pc+3i I cycle (pc+2i) - N cycle s

2 pc+3i I cycle - da I cycle t (da)

3 pc+3i I cycle - - t (da)

4 pc’ N cycle - - N cycle t -

5 pc’+i S cycle (pc’) - I cycle t -

6 pc’+2i S cycle (pc’+i) - I cycle t -

(pc’+2i) -

Table 7-18 Load register operation cycle timing (continued)

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

DnTRANS RDATA

Table 7-19 Cycle timing for load operations resulting in interlocks

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA

Single-cycle

interlock

1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i S cycle - - I cycle (da)

(pc+3i) -

Two-cycle

interlock

1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i I cycle - - I cycle (da)

3 pc+3i S cycle - - I cycle -

(pc+3i) -
7-24 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
Table 7-20 shows the one-cycle interlock incurred for the following sequence of
instructions:

LDRB r0, [r1]
ADD r6, r6, r3
ADD r2, r0, r1

Table 7-21 shows the cycle timing for the following code sequence:

LDRB r0, [r2]
STMIA r3, {r0-r1}

Table 7-20 Example sequence LDRB, ADD, and ADD cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA

LDRB r0, [r1] 1 pc+3i S cycle (pc+2i) da N cycle

ADD r6, r6, r3 2 pc+4i I cycle (pc+3i) - I cycle (da)

3 pc+4i S cycle - - I cycle -

ADD r2, r0, r1 4 pc+5i S cycle (pc+4i) - I cycle -

(pc+5i) -

Table 7-21 Example sequence LDRB and STMIA cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA

LDRB r0, [r2] 1 pc+3i S cycle (pc+2i) da N cycle

STMIA r3, {r0-r1} 2 pc+4i I cycle (pc+3i) - I cycle (da)

3 pc+4i I cycle - r3 N cycle -

4 pc+4i S cycle - r3+4 S cycle r0

(pc+4i) r1
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-25

Instruction Cycle Times
7.13 Store register

A store register operation executes in one or two cycles. During the last Execute cycle,
the store address is calculated, and the data to be stored is read onto the C bus.

Table 7-22 shows the cycle timing for a store register operation, where:

s Represents the current mode-dependent value.

t Is either 0, when the T bit is specified in the instruction (for example STRT)
or s at all other times.

Table 7-22 Store register operation cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

DnTRANS WDATA

Normal case 1 pc+3i S cycle (pc+2i) da N cycle t

(pc+3i) Rd

Scaled offset 1 pc+3i I cycle (pc+2i)

2 pc+3i S cycle - da N cycle t

(pc+3i) Rd
7-26 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.14 Load multiple registers

A load multiple (LDM) takes several cycles to execute, depending on the number of
registers transferred and whether the PC is in the list of registers transferred:

1. During the first cycle, the ARM9E-S core calculates the address of the first word
to be transferred, while performing an instruction prefetch.

2. During the second and subsequent cycles, ARM9E-S core reads the data
requested in the previous cycle and calculates the address of the next word to be
transferred. The new value for the base register is calculated.

When a Data Abort occurs, the instruction continues to completion. The ARM9E-S core
prevents all register writing after the abort. The ARM9E-S core restores the modified
base pointer (which the load activity before the abort occurred might have overwritten).

When the PC is in the list of registers to be loaded, the ARM9E-S core invalidates the
current contents of the instruction pipeline. The PC is always the last register to be
loaded, so an abort at any point prevents the PC from being overwritten.

Note
 LDM with destination = PC cannot be executed in Thumb state. However, POP{Rlist, PC}
equates to an LDM with destination = PC.

7.14.1 Interlocks

An LDM instruction can cause an interlock if a following instruction is dependent on the
last data value transferred. This is similar to the interlock cases present with a single
word register load. There is an exception to this case for a single-word LDM where,
because of the presence of an idle cycle at the end of a single-word LDM, no interlock
condition exists.

For example, the following sequence incurs a single-cycle interlock:

LDMIA r0, {r1-r2}
ADD r3, r2, r4

The following sequence incurs a single-cycle interlock:

LDMIA r0, {r1-r2}
STR r2, [r3]

The following sequence does not incur an interlock:

LDMIA r0, {r1}
STR r1, [r2]
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-27

Instruction Cycle Times
The LDM cycle timings are shown in Table 7-23.

Table 7-23 LDM cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA

1 register (not PC) 1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i S cycle - - I cycle (da)

(pc+3i) -

n registers

(n > 1)

(not PC)

1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i I cycle - da++ S cycle (da)

. pc+3i I cycle - da++ S cycle (da++)

n pc+3i S cycle - da++ S cycle (da++)

(pc+3i) (da++)

1 register

dest=pc

1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i I cycle - - I cycle (da)

3 pc’ N cycle - - I cycle -

4 pc’+i S cycle (pc’) - I cycle -

5 pc’+2i S cycle (pc’+i) - I cycle -

(pc’+2i) -

n registers

(n > 1)

(incl pc)

1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i I cycle - da++ S cycle (da)

. pc+3i I cycle - da++ S cycle (da++)

n pc+3i I cycle - da++ S cycle (da++)

n + 1 pc+3i I cycle - - I cycle (da++)

n + 2 pc’ N cycle - - I cycle -

n + 3 pc’+i S cycle (pc’) - I cycle -

n + 4 pc’+2i S cycle (pc’+i) - I cycle -

(pc’+2i) -
7-28 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
n registers

(n > 1)

(1 cycle interlock)

1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i I cycle - da++ S cycle (da)

. pc+3i I cycle - da++ S cycle (da++)

n pc+3i I cycle - da++ S cycle (da++)

n + 1 pc+3i S cycle - - I cycle (da++)

(pc+3i) -

Table 7-23 LDM cycle timing (continued)

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-29

Instruction Cycle Times
7.15 Store multiple registers

Store multiple (STM) instructions proceed in a similar fashion as load multiple
instructions:

1. During the first cycle, the ARM9E-S core calculates the address of the first word
to be transferred, while performing an instruction prefetch and also calculating
the new value for the base register.

2. During the second and subsequent cycles, ARM9E-S core stores the data
requested in the previous cycle and calculates the address of the next word to be
transferred.

When a Data Abort occurs, the instruction continues to completion. The ARM9E-S core
restores the modified base pointer (which the load activity before the abort occurred
might have overwritten).

The STM cycle timings are shown in Table 7-24.

Table 7-24 STM cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

WDATA

1 register 1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i S cycle - - I cycle R

(pc+3i) -

n registers

(n > 1)

1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i I cycle - da++ S cycle R

. pc+3i I cycle - da++ S cycle R’

n pc+3i S cycle - da++ S cycle R’’

(pc+3i) R’’’
7-30 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.16 Load double register

The LDRD instruction behaves in the same way as an LDM of two registers. See Load
multiple registers on page 7-27 and the appropriate entries in Table 7-23 on page 7-28.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-31

Instruction Cycle Times
7.17 Store double register

The STRD instruction behaves in the same way as an STM of two registers. See Store
multiple registers on page 7-30 and the appropriate entries in Table 7-24 on page 7-30.
7-32 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.18 Data swap

A data swap is similar to a back-to-back load and store instruction. The data is read from
external memory in the second cycle and the contents of the register are written to the
external memory in the third cycle (which is merged with the first Execute cycle of the
next instruction).

The data swapped can be a byte or word quantity.

The swap operation might be aborted in either the read or the write cycle. An aborted
swap operation does not affect the destination register.

Note
 Data swap instructions are not available in Thumb state.

The DLOCK output of ARM9E-S core is driven HIGH for both read and write cycles
to indicate to the memory system that it is an atomic operation.

7.18.1 Interlocks

A swap operation can cause one and two-cycle interlocks in a similar fashion to a load
register instruction.

Table 7-25 shows the cycle timing for the basic data swap operation.

Table 7-25 Data swap cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA WDATA

Normal 1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i S cycle - da N cycle (da) -

(pc+3i) - Rd

1 cycle interlock 1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i I cycle - da N cycle (da) -

3 pc+3i S cycle - - I cycle - Rd

(pc+3i) - -
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-33

Instruction Cycle Times
2 cycle interlock 1 pc+3i I cycle (pc+2i) da N cycle

2 pc+3i I cycle - da N cycle (da) -

3 pc+3i I cycle - - I cycle - Rd

4 pc+3i S cycle - - I cycle - -

(pc+3i) - -

Table 7-25 Data swap cycle timing (continued)

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA WDATA
7-34 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.19 PLD

A PLD operation executes in a single cycle. During the Execute cycle, the prefetch
address is calculated and broadcast on DA[31:0]. DnMREQ and DSEQ indicate an
internal cycle, and DnSPEC is asserted.

Table 7-26 shows the cycle timings for PLD instructions.

Table 7-26 PLD operation cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA WDATA

1 pc+3i S cycle (pc+2i) da I cycle

(pc+3i) - -
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-35

Instruction Cycle Times
7.20 Software interrupt, undefined instruction, and exception entry

Exceptions, software interrupts (SWIs), and undefined instructions force the PC to a
specific value and refill the instruction pipeline from this address:

1. During the first cycle, the ARM9E-S core constructs the forced address, and a
mode change might take place.

2. During the second cycle, the ARM9E-S core performs a fetch from the exception
address. The return address to be stored in r14 is calculated. The state of the CPSR
is saved in the relevant SPSR.

3. During the third cycle, the ARM9E-S core performs a fetch from the exception
address + 4, refilling the instruction pipeline.

The exception entry cycle timings are show in Table 7-27, where:

pc Is one of:

• the address of the SWI instruction for SWIs

• the address of the instruction following the last one to be executed
before entering the exception for interrupts

• the address of the aborted instruction for Prefetch Aborts

• the address of the instruction following the one that attempted the
aborted data transfer for Data Aborts.

Xn Is the appropriate exception address.

Note
 The value on the INSTR bus can be unpredictable in the case of Prefetch Abort or Data
Abort entry.

Table 7-27 Exception entry cycle timing

Cycle IA
InMREQ,
ISEQ

InTRANS ITBIT INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

1 Xn N cycle 1 0 - I cycle

2 Xn+4 S cycle 1 0 (Xn) - I cycle -

3 Xn+8 S cycle 1 0 (Xn+4) - I cycle -

(Xn+8) -
7-36 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.21 Coprocessor data processing operation

A coprocessor data (CDP) operation is a request from the ARM9E-S core for the
coprocessor to initiate some action. There is no requirement for the coprocessor to
complete the action immediately, but the coprocessor must commit to completion
before driving CHSD or CHSE to LAST.

If the coprocessor cannot perform the requested task, it leaves CHSD at ABSENT.
When the coprocessor is able to perform the task, but cannot commit immediately, the
coprocessor drives CHSD to WAIT, and in subsequent cycles drives CHSE to WAIT
until able to commit, where it drives CHSE to LAST.

An interrupt can cause the ARM9E-S core to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 5-15).

Note
 Coprocessor operations are only available in ARM state.

The coprocessor data operation cycle timings are shown in Table 7-28.

Table 7-28 Coprocessor data operation cycle timing

Cycle IA IREQa INSTR DA DREQb
RDATA/
WDATA

Pc LCd CHSD CHSE

ready LAST

1 pc+3i S cycle (pc+2i) - I cycle 1 0 -

(pc+3i) -

not ready WAIT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT

. pc+3i I cycle - - I cycle - 1 0 WAIT

n pc+3i I cycle - - I cycle - 1 0 LAST

n + 1 pc+3i S cycle - - I cycle - 1 0 -

(pc+3i) -

a. IREQ = InMREQ, ISEQ.
b. DREQ = DnMREQ, DSEQ.
c. P = PASS.
d. LC = LATECANCEL.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-37

Instruction Cycle Times
7.22 Load coprocessor register, from memory

The load coprocessor (LDC) operation transfers one or more words of data from memory
to a coprocessor.

The coprocessor commits to the transfer only when it is ready to accept the data. The
coprocessor indicates that it is ready for the transfer to commence by driving CHSD or
CHSE to GO. The ARM9E-S core produces addresses and requests data memory reads
on behalf of the coprocessor, which is expected to accept the data at sequential rates.
The coprocessor is responsible for determining the number of words to be transferred.
It indicates this using the CHSD and CHSE signals, setting the appropriate signal to
LAST in the cycle before it is ready to initiate the transfer of the last data word.

An interrupt can cause the ARM9E-S core to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 5-15).

Note
 Coprocessor operations are only available in ARM state.

The load coprocessor register cycle timings are shown in Table 7-29.

Table 7-29 Load coprocessor register cycle timing

Cycle IA IREQa INSTR DA DREQb RDATA Pc LCd CHSD CHSE

1 register

ready

LAST

1 pc+3i S cycle (pc+2i) da N cycle 1 0 -

(pc+3i) (da)

1 register

not ready

WAIT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT

. pc+3i I cycle - - I cycle - 1 0 WAIT

n pc+3i I cycle - - I cycle - 1 0 LAST

n+1 pc+3i S cycle - da N cycle - 1 0 -

(pc+3i) (da)
7-38 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
m registers

(m > 1)

ready

GO

1 pc+3i I cycle (pc+2i) da N cycle 1 0 GO

2 pc+3i I cycle - da++ S cycle (da) 1 0 GO

. pc+3i I cycle - da++ S cycle (da++) 1 0 GO

m-1 pc+3i I cycle - da++ S cycle (da++) 1 0 LAST

m pc+3i S cycle - da++ S cycle (da++) 1 0 -

(pc+3i) (da++)

m registers

(m > 1)

not ready

WAIT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT

. pc+3i I cycle - - I cycle - 1 0 WAIT

n pc+3i I cycle - - I cycle - 1 0 GO

n+1 pc+3i I cycle - da N cycle - 1 0 GO

n+2 pc+3i I cycle - da++ S cycle (da) 1 0 GO

. pc+3i I cycle - da++ S cycle (da++) 1 0 GO

n+
m-1

pc+3i I cycle - da++ S cycle (da++) 1 0 LAST

n+
m

pc+3i S cycle - da++ S cycle (da++) 1 0 -

(pc+3i) (da++)

a. IREQ = InMREQ, ISEQ.
b. DREQ = DnMREQ, DSEQ.
c. P = PASS.
d. LC = LATECANCEL.

Table 7-29 Load coprocessor register cycle timing (continued)

Cycle IA IREQa INSTR DA DREQb RDATA Pc LCd CHSD CHSE
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-39

Instruction Cycle Times
7.23 Store coprocessor register, to memory

The store coprocessor (STC) operation transfers one or more words of data from a
coprocessor to memory.

The coprocessor commits to the transfer only when it is ready to write the data. The
coprocessor indicates that it is ready for the transfer to commence by driving CHSD or
CHSE to GO. The ARM9E-S core produces addresses and requests data memory
writes on behalf of the coprocessor, which is expected to produce the data at sequential
rates. The coprocessor is responsible for determining the number of words to be
transferred. It indicates this using the CHSD and CHSE signals, setting the appropriate
signal to LAST in the cycle before it is ready to initiate the transfer of the last data word.

An interrupt can cause the ARM9E-S core to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 5-15).

Note
 Coprocessor operations are only available in ARM state.

The store coprocessor register cycle timings are shown in Table 7-30.

Table 7-30 Store coprocessor register cycle timing

Cycle IA IREQa INSTR DA DRQb RDATA Pc LCd CHSD CHSE

1 register

ready

LAST

1 pc+3i S cycle (pc+2i) da N cycle 1 0 -

(pc+3i) CPData1

1 register

not ready

WAIT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT

. pc+3i I cycle - - I cycle - 1 0 WAIT

n pc+3i I cycle - - I cycle - 1 0 LAST

n+1 pc+3i S cycle - da N cycle - 1 0 -

(pc+3i) CPData1
7-40 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
m
registers

(m > 1)

ready

GO

1 pc+3i I cycle (pc+2i) da N cycle 1 0 GO

2 pc+3i I cycle - da++ S cycle CPData1 1 0 GO

. pc+3i I cycle - da++ S cycle CPData 1 0 GO

m-1 pc+3i I cycle - da++ S cycle CPDatam-2 1 0 LAST

m pc+3i S cycle - da++ S cycle CPDatam-1 1 0 -

(pc+3i) CPDatam

m
registers

(m > 1)

not ready

WAIT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT

. pc+3i I cycle - - I cycle - 1 0 WAIT

n pc+3i I cycle - - I cycle - 1 0 GO

n+1 pc+3i I cycle - da N cycle - 1 0 GO

n+2 pc+3i I cycle - da++ S cycle CPData1 1 0 GO

. pc+3i I cycle - da++ S cycle CPData 1 0 GO

n+m-1 pc+3i I cycle - da++ S cycle CPDatam-2 1 0 LAST

n+m pc+3i S cycle - da++ S cycle CPDatam-1 1 0 -

(pc+3i) CPDatam

a. IREQ = InMREQ, ISEQ.
b. DRQ = DnMREQ, DSEQ.
c. P = PASS.
d. LC = LATECANCEL.

Table 7-30 Store coprocessor register cycle timing (continued)

Cycle IA IREQa INSTR DA DRQb RDATA Pc LCd CHSD CHSE
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-41

Instruction Cycle Times
7.24 Coprocessor register transfer, to ARM

The move from coprocessor (MRC) operation transfers a single coprocessor register into
the specified ARM register.

Data is transferred over the data bus interface, in a similar fashion to a load register
operation.

An interrupt can cause the ARM9E-S core to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 5-15).

Note
 Coprocessor operations are only available in ARM state.

The MRC instruction cycle timings are shown in Table 7-31.

Table 7-31 MRC instruction cycle timing

Cycle IA IREQa INSTR DA DREQb RDATA Pc LCd CHSD CHSE

ready LAST

1 pc+3i S cycle (pc+2i) - C cycle 1 0 -

(pc+3i) CPData

not ready WAIT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT

. pc+3i I cycle - - I cycle - 1 0 WAIT

n pc+3i I cycle - - I cycle - 1 0 LAST

n+1 pc+3i S cycle - - C cycle - 1 0 -

(pc+3i) CPData

a. IREQ = InMREQ, ISEQ.
b. DREQ = DnMREQ, DSEQ.
c. P = PASS.
d. LC = LATECANCEL.
7-42 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.25 Coprocessor register transfer, from ARM register

The move to coprocessor (MCR) operation transfers a specified ARM register to a
coprocessor register.

Data is transferred over the data bus interface, in a similar fashion to a store register
operation.

An interrupt can cause the ARM9E-S core to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 5-15).

Note
 Coprocessor operations are only available in ARM state.

The MCR instruction cycle timings are shown in Table 7-32.

Table 7-32 MCR instruction cycle timing

Cycle IA IREQa INSTR DA DREQb WDATA Pc LCd CHSD CHSE

ready LAST

1 pc+3i S cycle (pc+2i) - C cycle 1 0 -

(pc+3i) Rd

not ready WAIT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT

. pc+3i I cycle - - I cycle - 1 0 WAIT

n pc+3i I cycle - - I cycle - 1 0 LAST

n+1 pc+3i S cycle - - C cycle - 1 0 -

(pc+3i) Rd

a. IREQ = InMREQ, ISEQ.
b. DREQ = DnMREQ, DSEQ.
c. P = PASS.
d. LC = LATECANCEL.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-43

Instruction Cycle Times
7.26 Double coprocessor register transfer, to ARM register

The move double from coprocessor (MRRC) operation transfers two coprocessor registers
into the specified ARM registers.

Data is transferred over the data bus interface, in a similar fashion to a load register
operation.

An interrupt can cause the ARM9E-S core to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 5-15).

Note
 Coprocessor operations are only available in ARM state.

The MRRC instruction cycle timings are shown in Table 7-33.

Table 7-33 MRRC instruction cycle timing

Cycle IA IREQa INSTR DA DREQb RDATA Pc LCd CHSD CHSE

ready GO

1 pc+3i I cycle (pc+2i) - C cycle 1 0 LAST

2 pc+3i S cycle - - C cycle CPData1 1 0 -

(pc+3i) CPData2

not ready WAIT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT

. pc+3i I cycle - - I cycle - 1 0 WAIT

n pc+3i I cycle - - I cycle - 1 0 GO

n+1 pc+3i I cycle - - C cycle - 1 0 LAST

n+2 pc+3i S cycle - - C cycle CPData1 1 0 -

(pc+3i) CPData2

a. IREQ = InMREQ, ISEQ.
b. DREQ = DnMREQ, DSEQ.
c. P = PASS.
d. LC = LATECANCEL.
7-44 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
7.27 Double coprocessor register transfer, from ARM register

The move double to coprocessor (MCRR) operation transfers two specified ARM registers
to a coprocessor.

Data is transferred over the data bus interface, in a similar fashion to a store register
operation.

An interrupt can cause the ARM9E-S core to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 5-15).

Note
 Coprocessor operations are only available in ARM state.

The MCRR instruction cycle timings are shown in Table 7-34.

Table 7-34 MCRR instruction cycle timing

Cycle IA IREQa INSTR DA DREQb WDATA Pc LCd CHSD CHSE

ready GO

1 pc+3i I cycle (pc+2i) - C cycle 1 0 LAST

pc+3i S cycle - - C cycle Rd 1 0 -

(pc+3i) Rn

not ready WAIT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT

. pc+3i I cycle - - I cycle - 1 0 WAIT

n pc+3i I cycle - - I cycle - 1 0 GO

n+1 pc+3i I cycle - - C cycle - 1 0 LAST

n+2 pc+3i S cycle (pc+3i) - C cycle Rd 1 0 -

Rn

a. IREQ = InMREQ, ISEQ.
b. DREQ = DnMREQ, DSEQ.
c. P = PASS.
d. LC = LATECANCEL.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-45

Instruction Cycle Times
7.28 Coprocessor absent

If no coprocessor is able to process a coprocessor instruction, the instruction is treated
as an UNDEFINED instruction. This enables software to emulate coprocessor
instructions when no hardware coprocessor is present.

Note
 By default, CHSD and CHSE must be driven to ABSENT unless the coprocessor
instruction is being handled by a coprocessor. Coprocessor operations are only available
in ARM state.

The cycle timings for coprocessor absent instructions are shown in Table 7-35.

Table 7-35 Coprocessor absent instruction cycle timing

Cycle IA IREQa INST
R

DA DREQb
RDATA/
WDATA

Pc LCd CHSD CHSE

coprocessor

absent in

decode

ABSENT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 - -

2 0x4 N cycle - - I cycle - 0 0 - -

3 0x8 S cycle (0x4) - I cycle - 0 0 -

4 0xC S cycle (0x8) - I cycle - 0 0 -

(0xC) -

coprocessor

absent in

execute

WAIT

1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT

. pc+3i I cycle - - I cycle - 0 0 WAIT

n pc+3i I cycle - - I cycle - 0 0 ABSENT

n+
1

0x4 N cycle - - I cycle - 0 0 -

n+
2

0x8 S cycle (0x4) - I cycle - 0 0

n+
3

0xC S cycle (0x8) - I cycle - 0 0

(0xC) -
7-46 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Instruction Cycle Times
a. IREQ = InMREQ, ISEQ.
b. DREQ = DnMREQ, DSEQ.
c. P = PASS.
d. LC = LATECANCEL.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 7-47

Instruction Cycle Times
7.29 Unexecuted instructions

When the condition code of any instruction is not met, the instruction is not executed.
An unexecuted instruction takes one cycle.

Table 7-36 shows the instruction cycle timing for an unexecuted instruction.

Table 7-36 Unexecuted instruction cycle timing

Cycle IA
InMREQ,
ISEQ

INSTR DA
DnMREQ,
DSEQ

RDATA/
WDATA

1 pc + 3i S cycle (pc + 2i) - I cycle

(pc + 3i) -
7-48 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Chapter 8
Debug Interface and EmbeddedICE-RT

This chapter describes:

• The ARM9E-S debug interface in the following sections:

— About the debug interface on page 8-2

— Debug systems on page 8-3

— Debug interface signals on page 8-9

— ARM9E-S core clock domains on page 8-15

— Determining the core and system state on page 8-16.

• The ARM9E-S EmbeddedICE-RT logic in the following sections:

— About EmbeddedICE-RT on page 8-6

— Disabling EmbeddedICE-RT on page 8-8

— The debug communications channel on page 8-17

— Monitor mode debug on page 8-22

— Using watchpoints and breakpoints on page 8-24.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-1

Debug Interface and EmbeddedICE-RT
8.1 About the debug interface

The ARM9E-S core debug interface is based on IEEE Std. 1149.1-1990, Standard Test
Access Port and Boundary-Scan Architecture. See this standard for an explanation of
the terms used in this chapter and for a description of the TAP controller states.

The ARM9E-S contains hardware extensions for advanced debugging features. These
make it easier to develop application software, operating systems, and the hardware
itself. ARM9E-S core supports two modes of debug operation:

• Halt mode

• Monitor mode.

8.1.1 Halt mode

In halt mode debug, the debug extensions enable the core to be forced into debug state.
In debug state, the core is stopped and isolated from the rest of the system. This enables
the internal state of the core, and the external state of the system, to be examined while
all other system activity continues as normal. When debug has been completed, the core
and system state can be restored, and program execution resumed.

8.1.2 Monitor mode

On a breakpoint or watchpoint, an Instruction Abort or Data Abort is generated instead
of entering halt mode debug. When used in conjunction with a debug monitor program
activated by the abort exception entry, it is possible to debug the ARM9E-S core while
allowing the execution of critical interrupt service routines. The debug monitor program
typically communicates with the debug host over the ARM9E-S core debug
communication channel. Monitor mode debug is described in Monitor mode debug on
page 8-22.
8-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
8.2 Debug systems

The ARM9E-S core forms one component of a debug system that interfaces from the
high-level debugging performed by the user to the low-level interface supported by the
ARM9E-S core. Figure 8-1 shows a typical debug system.

Figure 8-1 Typical debug system

A debug system typically has three parts:

• The debug host

• The protocol converter

• The ARM9E-S core on page 8-4 (the debug target).

The debug host and the protocol converter are system-dependent.

8.2.1 The debug host

The debug host is a computer running a software debugger, such as armsd. The debug
host enables you to issue high-level commands such as setting breakpoints or examining
the contents of memory.

8.2.2 The protocol converter

An interface, such as an RS232 or parallel connection, connects the debug host to the
ARM9E-S development system. The messages broad cast over this connection must be
converted to the interface signals of the ARM9E-S core. The protocol converter
performs this conversion.

Host computer running ARM or third-party toolkitDebug
host

Protocol
converter

Debug
host

Debug
target

For example, Multi-ICE

Development system containing ARM9E-S
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-3

Debug Interface and EmbeddedICE-RT
8.2.3 The ARM9E-S core

The ARM9E-S core has hardware extensions that ease debugging at the lowest level.
The debug extensions:

• enable you to stall program execution by the core

• examine the core internal state

• examine the state of the memory system

• resume program execution.

The major blocks of the ARM9E-S core are:

ARM9E-S core This is the CPU core, with hardware support for debug.

EmbeddedICE-RT logic

This is a set of registers and comparators used to generate debug
exceptions (such as breakpoints). This unit is described in About
EmbeddedICE-RT on page 8-6.

TAP controller This controls the action of the scan chains using a JTAG serial
interface.

ARM9E-S ETM interface

This interface facilitates connection of the ETM to the core. The
ETM is described in the ETM9 Technical Reference Manual.

These blocks are shown in Figure 8-2 on page 8-5.
8-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
Figure 8-2 ARM9E-S core debug block diagram

In halt mode debug a request on one of the external debug interface signals, or on an
internal functional unit known as the EmbeddedICE-RT logic, forces the ARM9E-S
core into debug state. The events that activate debug are:

• a breakpoint (a given instruction fetch)

• a watchpoint (a data access)

• an external debug request

• scanned debug request (a debug request scanned into the EmbeddedICE-RT delay
control register).

The internal state of the ARM9E-S core is examined using the JTAG serial interface,
that allows instructions to be serially inserted into the core pipeline without using the
external data bus. So, for example, when in debug state, a store multiple (STM) can be
inserted into the instruction pipeline, and this exports the contents of the ARM9E-S
registers. This data can be serially shifted out without affecting the rest of the system.

TAP controller

Main processor
logic

EmbeddedICE-RT

ARM9E-S

Scan chain 2

S
c
a
n

c
h
a
in

1

ETM
interface
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-5

Debug Interface and EmbeddedICE-RT
8.3 About EmbeddedICE-RT

The ARM9E-S EmbeddedICE-RT logic provides integrated on-chip debug support for
the ARM9E-S core.

EmbeddedICE-RT is programmed serially using the ARM9E-S TAP controller.
Figure 8-3 shows the relationship between the core, EmbeddedICE-RT, and the TAP
controller. It only shows the signals that are pertinent to EmbeddedICE-RT.

Figure 8-3 The ARM9E-S, TAP controller, and EmbeddedICE-RT

The EmbeddedICE-RT logic comprises:

• two real-time watchpoint units

• two independent registers, the debug control register and the debug status register

• debug comms channel.

The debug control register and the debug status register provide overall control of
EmbeddedICE-RT operation.

TAP

EmbeddedICE-RTProcessor

DBGTCKEN
DBGTMS
DBGTDI

DBGTDO

CLK

DBGIEBKPT

EDBGRQ

DBGACK

DBGEN

DBGRNG[1:0]

DBGEXT[1:0]

DBGCOMMRX

DBGCOMMTX

DBGDEWPT

DBGnTRST
8-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
You can program one or both watchpoint units to halt the execution of instructions by
the core. Execution halts when the values programmed into EmbeddedICE-RT match
the values currently appearing on the address bus, data bus, and various control signals.

Note
 You can mask any bit so that its value does not affect the comparison.

You can configure each watchpoint unit to be either a watchpoint (monitoring data
accesses) or a breakpoint (monitoring instruction fetches). Watchpoints and breakpoints
can be data-dependent in halt mode debug.

The EmbeddedICE-RT logic can be configured into a mode of operation where
watchpoints or breakpoints generate Data or Prefetch Aborts respectively. This enables
a Real-Time (RT) debug monitor system to debug the ARM9E-S while still allowing
critical fast interrupt requests to be serviced.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-7

Debug Interface and EmbeddedICE-RT
8.4 Disabling EmbeddedICE-RT

You can disable EmbeddedICE-RT by setting the DBGEN input LOW.

Caution
 Hard wiring the DBGEN input LOW permanently disables all debug functionality.

When DBGEN is LOW, it inhibits DBGDEWPT, DBGIEBKPT, and EDBGRQ to
the core, and DBGACK from the ARM9E-S core is always LOW.
8-8 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
8.5 Debug interface signals

There are four primary external signals associated with the debug interface:

• DBGIEBKPT, DBGDEWPT, and EDBGRQ are system requests for the
ARM9E-S core to enter debug state

• DBGACK is used by the ARM9E-S core to flag back to the system that it is in
debug state.

8.5.1 Entry into debug state on breakpoint

An instruction being fetched from memory is sampled at the end of a cycle. To apply a
breakpoint to that instruction, the breakpoint signal must be asserted by the end of the
same cycle. This is shown in Figure 8-4.

Figure 8-4 Breakpoint timing

You can build external logic, such as additional breakpoint comparators, to extend the
breakpoint functionality of the EmbeddedICE-RT logic. You must apply their output to
the DBGIEBKPT input.

Note
 The timing of the DBGIEBKPT input makes it unlikely that data-dependent external
breakpoints are possible.

CLK

INSTR[31:0] 1

M1E1 W1D1

IA[31:1]

2 3 4

DBGIEBKPT

DBGACK

F1

M2E2 W2D2F2

(MB)(EB) (WB)DBFB

Edebug1Ddebug Edebug2

Breakpointed instruction

B

F3 (D3)

(F4)

(E3) (M3)

(D4) (E4)
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-9

Debug Interface and EmbeddedICE-RT
A breakpointed instruction is allowed to enter the Execute stage of the pipeline, but any
state change as a result of the instruction is prevented. All instructions prior to the
breakpointed instruction complete as normal.

Note
 If a breakpointed instruction does not reach the Execute stage, for instance, if an earlier
instruction is a branch, then both the breakpointed instruction and breakpoint status are
discarded and the ARM9E-S core does not enter debug state.

The Decode cycle of the debug entry sequence occurs during the execute cycle of the
breakpointed instruction.

In Figure 8-4 on page 8-9 instruction B is breakpointed. The debug entry sequence is
initiated when instruction B enters the Execute stage. The ARM9E-S core completes the
debug entry sequence and asserts DBGACK two cycles later.

Note
 In Thumb state when CFGTHUMB32 is HIGH the ARM9E-S core fetches instructions
in 32-bit quantities. To apply breakpoints on specific Thumb instructions the breakpoint
unit must use a slightly modified interface. Use an inverted version of PADV instead of
InMREQ and use THUMBHW instead of IA[1].

This interface change is valid for ARM and Thumb states with CFGTHUMB32 LOW
or HIGH.

8.5.2 Breakpoints and exceptions

A breakpointed instruction can have a Prefetch Abort associated with it. If so, the
Prefetch Abort takes priority and the breakpoint is ignored. (If there is a Prefetch Abort,
instruction data might be invalid, the breakpoint might have been data-dependent, and
as the data might be incorrect, the breakpoint might have been triggered incorrectly.)

SWI and undefined instructions are treated in the same way as any other instruction that
can have a breakpoint set on it. Therefore, the breakpoint takes priority over the SWI or
undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an interrupt
(nIRQ or nFIQ), the interrupt is taken and the breakpointed instruction is discarded.
When the interrupt has been serviced, the execution flow is returned to the original
program. This means that the instruction which was previously breakpointed is fetched
again, and if the breakpoint is still set, the processor enters debug state when it reaches
the execute stage of the pipeline.
8-10 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
When the processor has entered debug state, it is important that further interrupts do not
affect the instructions executed. For this reason, as soon as the processor enters debug
state, interrupts are disabled, although the state of the I and F bits in the Program Status
Register (PSR) are not affected.

8.5.3 Watchpoints

Entry into debug state following a watchpointed memory access is imprecise. This is
necessary because of the nature of the pipeline.

You can build external logic, such as external watchpoint comparators, to extend the
functionality of the EmbeddedICE-RT logic. You must apply their output to the
DBGDEWPT input.

Note
 The timing of the DBGDEWPT input makes it unlikely that data-dependent external
watchpoints are possible.

After a watchpointed access, the next instruction in the processor pipeline is always
allowed to complete execution. Where this instruction is a single-cycle data processing
instruction, entry into debug state is delayed for one cycle while the instruction
completes. The timing of debug entry following a watchpointed load in this case is
shown in Figure 8-5 on page 8-12.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-11

Debug Interface and EmbeddedICE-RT
Figure 8-5 Watchpoint entry with data processing instruction

Although instruction 5 enters the Execute stage, it is not executed, and there is no state
update as a result of this instruction.

When the debugging session is complete, normal continuation involves a return to
instruction 5, the next instruction in the code sequence which has not yet been executed.

The instruction following the instruction that generated the watchpoint might have
modified the Program Counter (PC). If this happens, it is not possible to determine the
instruction that caused the watchpoint. A timing diagram showing debug entry after a
watchpoint where the next instruction is a branch is shown in Figure 8-6 on page 8-13.

CLK

INSTR[31:0]

InMREQ

RDATA[31:0]

1

M1E1 W1D1

WDATA[31:0]

DA[31:0]

2 LDR Dp 5 6

F1

M2E2 W2D2F2

MldrEldr WldrDldrFldr

MDpEDp WDpDDpFDp

M5E5 W5D5F5

Edebug1Ddebug Edebug2

7 8

DBGDEWPT

DBGACK
8-12 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
Figure 8-6 Watchpoint entry with branch

If the second instruction after the watchpointed instruction prefetch aborts then the
exception entry sequence is performed before the processor enters debug state.

You can always restart the processor. When the processor has entered debug state, the
ARM9E-S core can be interrogated to determine its state. In the case of a watchpoint,
the PC contains a value that is five instructions on from the address of the next
instruction to be executed. Therefore, if on entry to debug state, in ARM state, the
instruction SUB PC, PC, #20 is scanned in and the processor restarted, execution flow
returns to the next instruction in the code sequence.

8.5.4 Watchpoints and exceptions

If there is an abort with the data access as well as a watchpoint, the watchpoint condition
is latched, the exception entry sequence is performed, and then the processor enters
debug state. If there is an interrupt pending, the ARM9E-S core allows the exception
entry sequence to occur and then enters debug state.

8.5.5 Debug request

A debug request can take place through the EmbeddedICE-RT logic or by asserting the
EDBGRQ signal. The request is registered and passed to the processor. Debug request
takes priority over any pending interrupt. Following registering, the core enters debug

CLK

INSTR[31:0]

InMREQ

RDATA[31:0]

LDR

WDATA[31:0]

DA[31:0]

B X X T T+4

MldrEldr WldrDldrFldr

MBEB WBDBFB

ETDTFT

Edebug1Ddebug Edebug2

T+8 T+C

DBGDEWPT

DBGACK

IA[31:1]
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-13

Debug Interface and EmbeddedICE-RT
state when the instruction at the Execute stage of the pipeline has completely finished
executing (when Memory and Write stages of the pipeline have completed). While
waiting for the instruction to finish executing, no more instructions are issued to the
Execute stage of the pipeline.

When a debug request occurs, the ARM9E-S core enters debug state even if the
EmbeddedICE-RT is configured for monitor mode debug.

8.5.6 Actions of the ARM9E-S core in debug state

When the ARM9E-S core is in debug state, both memory interfaces indicate internal
cycles. This enables the rest of the memory system to ignore the ARM9E-S core and
function as normal. Because the rest of the system continues operation, the ARM9E-S
core ignores aborts and interrupts.

The CFGBIGEND signal must not be changed by the system while in debug state. If it
changes, not only is there a synchronization problem, but the view of the ARM9E-S
core seen by the programmer changes without the knowledge of the debugger. The
nRESET signal must also be held stable during debug. If the system applies reset to the
ARM9E-S core (nRESET is driven LOW), the state of the ARM9E-S core changes
without the knowledge of the debugger.
8-14 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
8.6 ARM9E-S core clock domains

The ARM9E-S core has a single clock, CLK, that is qualified by two clock enables:

• CLKEN controls access to the memory system

• DBGTCKEN controls debug operations.

During normal operation, CLKEN conditions CLK to clock the core. When the
ARM9E-S core is in debug state, DBGTCKEN conditions CLK to clock the core.

8.6.1 Clocks and synchronization

If the system and test clocks are asynchronous, they must be synchronized externally to
the ARM9E-S core. The ARM Multi-ICE debug agent directly supports one or more
cores within an ASIC design. To synchronize off-chip debug clocking with the
ARM9E-S core requires a three-stage synchronizer. The off-chip device (for example,
Multi-ICE) issues a TCK signal, and waits for the RTCK (Returned TCK) signal to
come back. Synchronization is maintained because the off-chip device does not
progress to the next TCK until after RTCK is received. Figure 8-7 shows this
synchronization.

Figure 8-7 Clock synchronization

D Q D QD Q

D Q

D Q

TDO

RTCK

TCK

TMS

TDI

DBGTDO

CLK

DBGTDI

DBGTMS

DBGTCKEN

CLK

CLK

A
R

M
9

E
-SCLK

TCK synchronizer

Multi-ICE
interface
pads

Input sample and hold

EN

EN
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-15

Debug Interface and EmbeddedICE-RT
8.7 Determining the core and system state

When the ARM9E-S core is in debug state, you can examine the core and system state
by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug from Thumb state or ARM state, by examining
bit 4 of the EmbeddedICE-RT debug status register. If bit 4 is HIGH, the core has
entered debug from Thumb state.

For more details about determining the core state, see Determining the core and system
state on page B-18.
8-16 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
8.8 The debug communications channel

The ARM9E-S EmbeddedICE-RT logic contains a communications channel for
passing information between the target and the host debugger. This is implemented as
coprocessor 14.

The communications channel comprises:

• a 32-bit wide comms data read register

• a 32-bit wide comms data write register

• a 6-bit wide comms control register for synchronized handshaking between the
processor and the asynchronous debugger.

These registers are located in fixed locations in the EmbeddedICE-RT logic register
map (as shown in EmbeddedICE-RT logic on page B-27) and are accessed from the
processor using MCR and MRC instructions to coprocessor 14.

In addition to the comms channel registers, the processor can access a 1-bit debug status
register for use in the monitor mode debug configuration.

8.8.1 Debug comms channel registers

Coprocessor 14 contains 4 registers, allocated as shown in Table 8-1.

Seen from the debugger, the registers are accessed using the scan chain in the usual way.
Seen from the processor, these registers are accessed using coprocessor register transfer
instructions.

8.8.2 Debug comms channel control register

The debug comms channel control register is read-only.

Table 8-1 Coprocessor 14 register map

Register name
Register
number

Notes

Comms channel control C0 Read onlya

a. You can clear bit 0 of the comms channel control register by writing to it from the debugger
(JTAG) side.

Comms channel data read C1 For reads

Comms channel data write C1 For writes

Comms channel monitor mode debug status C2 Read/write
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-17

Debug Interface and EmbeddedICE-RT
Note
 The control register must be viewed as read-only. However, the debugger can clear the
R bit by performing a write to the debug comms channel control register. This feature
must not be used under normal circumstances.

The register controls synchronized handshaking between the processor and the
debugger. The debug comms channel control register is shown in Figure 8-8.

Figure 8-8 Debug comms channel control register

The function of each register bit is described below:

Bits [31:28] Contain a fixed pattern that denotes the EmbeddedICE version
number (in this case 0110).

Bits [27:2] Are reserved.

Bit 1 Denotes if the comms data write register is available (from the
viewpoint of the processor). Seen from the processor, if the
comms data write register is free (W=0), new data can be written.
If the register is not free (W=1), the processor must poll until
W=0.Seen from the debugger, when W=1, some new data has
been written that can then be scanned out.

Bit 0 Denotes if there is new data in the comms data read register. Seen
from the processor, if R=1, there is some new data that can be read
using an MRC instruction.

Seen from the debugger, if R=0, the comms data read register is
free, and new data can be placed there through the scan chain. If
R=1, this denotes that data previously placed there through the
scan chain has not been collected by the processor, and so the
debugger must wait.

You can use the following instructions to access these registers:

MRC p14, 0, Rd, c0, c0

This returns the debug comms control register into Rd.

MCR p14, 0, Rn, c1, c0

31 30 29 28 1 0

0 1 1 0

27 2

Reserved (SBZ) W R
8-18 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
This writes the value in Rn to the comms data write register.

MRC p14, 0, Rd, c1, c0

This returns the debug data read register into Rd.

Note
 The Thumb instruction set does not support coprocessor instructions. Therefore, the
processor must be in ARM state before you can access the debug comms channel.

8.8.3 Comms channel monitor mode debug status register

The coprocessor 14 monitor mode debug status register is provided for use by a debug
monitor when the ARM9E-S core is configured into the monitor mode debug mode.

The coprocessor 14 monitor mode debug status register is a 1-bit wide read/write
register having the format shown in Figure 8-9.

Figure 8-9 Coprocessor 14 monitor mode debug status register format

Bit 0 of the register, the DbgAbt bit, indicates whether the processor took a Prefetch or
Data Abort in the past because of a breakpoint or watchpoint. If the ARM9E-S core
takes a Prefetch Abort as a result of a breakpoint or watchpoint, then the bit is set. If on
a particular instruction or data fetch, both the debug abort and external abort signals are
asserted, the external abort takes priority and the DbgAbt bit is not set. You can read or
write the DbgAbt bit using MRC or MCR instructions.

A typical use of this bit is by a monitor mode debug aware abort handler. This examines
the DbgAbt bit to determine whether the abort was externally or internally generated. If
the DbgAbt bit is set, the abort handler initiates communication with the debugger over
the comms channel.

8.8.4 Communications using the comms channel

You can send and receive messages using the comms channel. These are described in:

• Sending a message to the debugger on page 8-20

• Receiving a message from the debugger on page 8-20.

31 1 0

Reserved (SBZ)

DbgAbt bit
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-19

Debug Interface and EmbeddedICE-RT
Sending a message to the debugger

Before the processor can send a message to the debugger, it must check that the comms
data write register is free for use by finding out if the W bit of the debug comms control
register is clear.

The processor reads the debug comms control register to check the status of the W bit:

• If the W bit is clear, the comms data write register is clear.

• If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

When the W bit is clear, a message is written by a register transfer to coprocessor 14.
As the data transfer occurs from the processor to the comms data write register, the W
bit is set in the debug comms control register.

The debugger has two options available for reading data from the comms data write
register:

• Poll the debug comms channel control register before reading the comms data
written. If the W bit is set, there is valid data present in the debug comms data
write register. The debugger can then read this data and scan the data out. The
action of reading the data clears the debug comms channel control register W bit.
Then the communications process can begin again.

• Poll the comms data write register, obtaining data and valid status. The data
scanned out consists of the contents of the comms data write register (which
might or might not be valid), and a flag that indicates whether the data read is
valid or not. The status flag is present in the Addr[0] bit position of scan chain 2
when the data is scanned out. See Test data registers on page B-10 for details of
scan chain 2.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger polls the R bit of the debug comms
control register:

• If the R bit is LOW, the comms data read register is free, and data can be placed
there for the processor to read.

• If the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the comms data read register is free, data is written there using the JTAG
interface. The action of this write sets the R bit in the debug comms control register.
8-20 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
The processor polls the debug comms control register. If the R bit is set, there is data
that can be read using an MRC instruction to coprocessor 14. The action of this load
clears the R bit in the debug comms control register. When the debugger polls this
register and sees that the R bit is clear, the data has been taken, and the process can now
be repeated.

8.8.5 Comms channel reset

The comms channel has the following behavior during reset:

• During the assertion of DBGnTRST (0):

— comms channel CP14 accesses are not bounced

— reading the debug comms channel control register returns 10 in the bottom
two bits of the register (write register full, read register empty)

— DBGCOMMRX is reset asynchronously to 0 (read buffer empty)

— DBGCOMMTX is reset asynchronously to 0 (transmit buffer full).

• On removal of reset on DBGnTRST (0 to 1), after the next rising edge of CLK:

— reading the debug comms channel control register returns 00 in the bottom
two bits of the register (write register empty, read register empty)

— DBGCOMMTX is set to 1 (transmit buffer empty).
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-21

Debug Interface and EmbeddedICE-RT
8.9 Monitor mode debug

The ARM9E-S core contains logic that enables the debugging of a system without
stopping the core entirely. This allows the continued servicing of critical interrupt
routines while the core is being interrogated by the debugger. Setting bit 4 of the debug
control register enables the monitor mode debug features of ARM9E-S core. When this
bit is set, the EmbeddedICE-RT logic is configured so that a breakpoint or watchpoint
causes the ARM to enter abort mode, taking the Prefetch or Data Abort vectors
respectively. There are a number of restrictions you must be aware of when the ARM is
configured for monitor mode debugging:

• Breakpoints and watchpoints cannot be data-dependent. No support is provided
for use of the range functionality. Breakpoints and watchpoints can only be based
on:

— instruction or data addresses

— external watchpoint conditioner (DBGEXTERN)

— User or Privileged mode access (DnTRANS/InTRANS)

— read/write access (watchpoints)

— access size (breakpoint ITBIT and watchpoints DMAS[1:0])
— chained comparisons.

• The single-step hardware must not be enabled.

• External breakpoints or watchpoints are not supported.

• The vector catching hardware can be used but must not be configured to catch the
Prefetch or Data Abort exceptions.

• No support is provided to mix halt mode debug and monitor mode debug
functionality.

The fact that an abort has been generated by the monitor mode is recorded in the monitor
mode debug status register in coprocessor 14 (see Comms channel monitor mode debug
status register on page 8-19).

Because the monitor mode debug bit does not put the ARM9E-S core into debug state,
it now becomes necessary to change the contents of the watchpoint registers while
external memory accesses are taking place, rather than being changed when in debug
state. In the event that the watchpoint registers are written to during an access, all
matches from the affected watchpoint unit using the register being updated are disabled
for the cycle of the update.

If there is a possibility of false matches occurring during changes to the watchpoint
registers, caused by old data in some registers and new data in others, then you must:

1. Disable the watchpoint unit using the control register for that watchpoint unit.
8-22 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug Interface and EmbeddedICE-RT
2. Change the other registers.

3. Re-enable the watchpoint unit by rewriting the control register.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 8-23

Debug Interface and EmbeddedICE-RT
8.10 Using watchpoints and breakpoints

The following information is described in this section:

• Watchpoints

• Breakpoints

• Monitor mode.

Note
 Breakpoints and watchpoints can have exceptions occurring at the same time. The
behavior of these are described in:

• Breakpoints and exceptions on page 8-10

• Watchpoints and exceptions on page 8-13.

8.10.1 Watchpoints

Watchpoint comparisons are on data addresses and data values. After the load or store
causing the watchpoint has executed a further execute cycle is completed.

8.10.2 Breakpoints

Breakpoint comparisons are made on the instruction address.

8.10.3 Monitor mode

In monitor mode debug:

Watchpoints Execute the LDR/STR and then take a data abort. The link register is the PC
value of the last instruction not to execute + 4. This allows the following
return command to be used, as in ARM state:

SUBS pc, lr, #4

Breakpoints Cause Prefetch Aborts. The link register is calculated in the same way as
normal Prefetch Aborts. The return instruction remains:

SUBS pc, lr, #4
8-24 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Chapter 9
AC Parameters

This chapter gives the AC timing parameters of the ARM9E-S core. It contains the
following sections:

• Timing diagrams on page 9-2

• AC timing parameter definitions on page 9-9.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 9-1

AC Parameters
9.1 Timing diagrams

The timing diagrams in this section are:

• Instruction memory interface timing, InMREQ and ISEQ on page 9-3

• Data memory interface timing on page 9-4

• Clock enable timing on page 9-4

• Coprocessor interface timing on page 9-5

• Exception and configuration timing on page 9-5

• Debug interface timing on page 9-6

• Interrupt sensitivity status timing on page 9-6

• JTAG interface timing on page 9-7

• DBGSDOUT to DBGTDO relationship on page 9-7

• PADV timing on page 9-8.

Instruction memory interface timing parameters are shown in Figure 9-1 on page 9-3.
9-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

AC Parameters
Figure 9-1 Instruction memory interface timing, InMREQ and ISEQ

Data memory interface timing parameters are shown in Figure 9-2 on page 9-4.

CLK

InMREQ, InMREQ

Tovinmreq Tohinmreq

INSTR[31:0]

IABORT

DBGIEBKPT

Tihinstr
Tisinstr

Tihiabort
Tisiabort

Tihiebkpt
Tisiebkpt

InTRANS
InM[4:0]
ITBIT

IA[31:1] Address

Control

Toviaddr

Tovictl

Tohiaddr

Tohictl

Control

Tovikill Tohikill

IKILL

ISEQ ISEQ

Toviseq Tohiseq
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 9-3

AC Parameters
Figure 9-2 Data memory interface timing

Clock enable timing parameters are shown in Figure 9-3.

Figure 9-3 Clock enable timing

Coprocessor interface timing parameters are shown in Figure 9-4 on page 9-5.

CLK

DnMREQ,
DSEQ,
DMORE,
DnSPEC
DBURST[3:0]

RDATA[31:0]

TRANS

DnRW,
DMAS[1:0],
DLOCK,
DnTRANS,
DnM[4:0]

DA[31:0] Address

Control

DABORT

DBGDEWPT

Tovdtrans Tohdtrans

Tovdaddr

Tovdctl

Tohdaddr

Tohdctl

WDATA[31:0] Data

Tovwdata Tohwdata

Tihrdata
Tisrdata

Tihdabort
Tisdabort

Tihdewpt
Tisdewpt

Data

Tovdkill Tohdkill

DKILL

CLK

CLKEN

Tisclken

Tihclken
9-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

AC Parameters
Figure 9-4 Coprocessor interface timing

Exception and configuration timing parameters are shown in Figure 9-5.

Figure 9-5 Exception and configuration timing

Debug interface timing parameters are shown in Figure 9-6 on page 9-6.

CLK

PASS

CHSD[1:0]

LATECANCEL

Tovpass Tohpass

Tovlate Tohlate

Tihchsd

CHSE[1:0]

Tischsd

Tihchse
Tischse

CLK

nFIQ,
nIRQ

CFGBIGEND,
CFGDISLTBIT,
CFGHIVECS
CFGTHUMB32

nRESET

Tihint
Tisint

Tihcfg
Tiscfg

Tihnreset
Tisnreset
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 9-5

AC Parameters
Figure 9-6 Debug interface timing

Sensitive to interrupt timing parameters are shown in Figure 9-7.

Figure 9-7 Interrupt sensitivity status timing

JTAG interface timing parameters are shown in Figure 9-8 on page 9-7.

CLK

DBGACK

DBGRQI

DBGRNG[1:0]

Tovdbgack Tohdbgack

T

T

T

T

ovdbgrng

ovdbgrqi

ovdbgstat

ovdbgcomm

T

T

T

T

ohdbgrng

ohdbgrqi

ohdbgstat

ohdbgcomm

DBGEN,
EDBGRQ,
DBGEXT[1:0]

Tihdbgin
Tisdbgin

DBGINSTREXEC,
DBGINSTRVALID

DBGCOMMRX,
DBGCOMMTX

CLK

FIQDIS,
IRQDIS

Tohintdis
Tovintdis
9-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

AC Parameters
Figure 9-8 JTAG interface timing

The relationship between DBGSDOUT and DBGTDO is shown in Figure 9-9.

Figure 9-9 DBGSDOUT to DBGTDO relationship

PADV timing parameters are shown in Figure 9-10 on page 9-8.

CLK

DBGIR[3:0],
DBGSCREG[4:0],
DBGTAPMS[3:0]

DBGSDIN

DBGnTDOEN

Tovdbgsm Tohdbgsm

T

T

T

ovtdoen

ovsdin

ovtdo

T

T

T

ohtdoen

ohsdin

ohtdo

DBGTDO

DBGnTRST

DBGTDI,
DBGTMS

Tihtdi
Tistdi

Tihntrst
Tisntrst

DBGTCKEN

Tihtcken
Tistcken

TAPID

Tihtapid
Tistapid

DBGSDOUT

DBGTDO

Ttdsh

Ttdsd
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 9-7

AC Parameters
Figure 9-10 PADV timing

CLK

PADV

Tovpadv TohpaTdv
9-8 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

AC Parameters
9.2 AC timing parameter definitions

Table 9-1 shows target AC parameters. All figures are expressed as percentages of the
CLK period at maximum operating frequency.

Note
 Where 0% is given, this indicates the hold time to clock edge plus the maximum clock
skew for internal clock buffering.

Table 9-1 Target AC timing parameters

Symbol Parameter Min Max

Tcyc CLK cycle time 100% -

Tisclken CLKEN input setup to rising CLK 40% -

Tihclken CLKEN input hold from rising CLK - 0%

Tovinmreq Rising CLK to valid InMREQ - 75%

Tohinmreq InMREQ hold time from rising CLK >0% -

Toviseq Rising CLK to ISEQ valid - 60%

Tohiseq ISEQ hold time to rising CLK >0% -

Toviaddr Rising CLK to IA valid - 75%

Tohiaddr IA hold time from rising CLK >0% -

Tovictl Rising CLK to instruction control valid - 80%

Tohictl Instruction control hold time from rising CLK >0% -

Tovikill Rising CLK to instruction control valid - 25%

Tohikill Instruction control hold time from rising CLK >0% -

Tisinstr INSTR input setup to rising CLK 30% -

Tihinstr INSTR input hold from rising CLK - 0%

Tisiabort IABORT input setup to rising CLK 30% -

Tihiabort IABORT input hold from rising CLK - 0%
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 9-9

AC Parameters
Tisiebkpt DBGIEBKPT input setup to rising CLK 30 -

Tihiebkpt DBGIEBKPT input hold from rising CLK - 0%

Tovdtrans Rising CLK to data transaction valid - 75%

Tohdtrans Data transaction hold time from CLK rising >0% -

Tovdaddr Rising CLK to DA valid - 75%

Tohdaddr DA hold time from CLK rising >0% -

Tovdctl Rising CLK to data control valid - 70%

Tohdctl Data control hold time from CLK rising >0% -

Tovdkill Rising CLK to data control valid - 40%

Tohdkill Data control hold time from CLK rising >0% -

Tovwdata Rising CLK to WDATA valid - 25%

Tohwdata WDATA hold time from CLK rising >0% -

Tisrdata RDATA input setup to rising CLK 30% -

Tihrdata RDATA input hold from rising CLK - 0%

Tisdabort DABORT input setup to rising CLK 30% -

Tihdabort DABORT input hold from rising CLK - 0%

Tisdewpt DBGDEWPT input setup to rising CLK 30% -

Tihdewpt DBGDEWPT input hold from rising CLK - 0%

Tovintdis Rising CLK to Sensitive to interrupt status valid - 70%

Tohintdis Sensitive to interrupt status hold from CLK rising >0% -

Tovpass Rising CLK to PASS valid - 45%

Tohpass PASS hold time from CLK rising >0% -

Tovlate Rising CLK to LATECANCEL valid - 40%

Tohlate CPLATECANCEL hold from CLK rising >0% -

Table 9-1 Target AC timing parameters (continued)

Symbol Parameter Min Max
9-10 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

AC Parameters
Tischsd CHSD input setup to rising CLK 35% -

Tihchsd CHSD input hold from rising CLK - 0%

Tischse CHSE input setup to rising CLK 35% -

Tihchse CHSE input hold from rising CLK - 0%

Tisint Interrupt input setup to rising CLK 30% -

Tihint Interrupt input hold from rising CLK - 0%

Tisnreset nRESET input setup to rising CLK 35% -

Tihnreset nRESET input hold from rising CLK - 0%

Tiscfg Configuration input setup to rising CLK 30% -

Tihcfg Configuration input hold from rising CLK - 0%

Tovdbgack CLK rising to DBGACK valid - 60%

Tohdbgack DBGACK hold time from CLK rising >0% -

Tovdbgrng CLK rising to DBGRNG valid - 80%

Tohdbgrng DBGRNG hold time from CLK rising >0% -

Tovdbgrqi CLK rising to DBGRQI valid - 45%

Tohdbgrqi DBGRQI hold time from CLK rising >0% -

Tovdbgstat Rising CLK to debug status valid - 45%

Tohdbgstat Debug status hold from CLK rising >0% -

Tovdbgcomm Rising CLK to comms channel outputs valid - 60%

Tohdbgcomm Comms channel output hold time from rising CLK >0% -

Tisdbgin Debug inputs input setup to rising CLK 25% -

Tihdbgin Debug inputs input hold from rising CLK - 0%

Tovdbgsm CLK rising to debug state valid - 50%

Tohdbgsm Debug state hold from CLK rising >0% -

Table 9-1 Target AC timing parameters (continued)

Symbol Parameter Min Max
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. 9-11

AC Parameters
Tovtdoen CLK rising to DBGnTDOEN valid - 60%

Tohtdoen DBGnTDOEN hold from CLK rising >0% -

Tovsdin CLK rising to DBGSDIN valid - 50%

Tohsdin DBGSDIN hold from CLK rising >0% -

Tovtdo CLK rising to DBGTDO valid - 50%

Tohtdo DBGTDO hold from CLK rising >0% -

Tisntrst DBGnTRST input setup to CLK rising 25% -

Tihntrst DBGnTRST input hold from CLK rising - 0%

Tistdi DBGTDI input setup to CLK rising 35% -

Tihtdi DBGTDI input hold from CLK rising - 0%

Tistcken DBGTCKEN input setup to CLK rising 35% -

Tihtcken DBGTCKEN input hold from CLK rising - 0%

Tistapid TAPID input setup to CLK rising 25% -

Tihtapid TAPID input hold time from CLK rising - 0%

Ttdsd DBGTDO delay from DBGSDOUT changing - -

Ttdsh DBGTDO hold time from DBGSDOUT changing - -

Tovetmzi Rising CLK to ETM interface signals valid - 40%

Tohetmzi ETM interface signals hold from CLK rising >0% -

Tovpadv Rising CLK to PADV valid - 80%

Tohpadv PADV hold from CLK rising >0% -

Table 9-1 Target AC timing parameters (continued)

Symbol Parameter Min Max
9-12 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Appendix A
Signal Descriptions

This appendix lists and describes all the ARM9E-S interface signals. It contains the
following sections:

• Clock interface signals on page A-2

• Instruction memory interface signals on page A-3

• Data memory interface signals on page A-4

• Miscellaneous signals on page A-6

• Coprocessor interface signals on page A-7

• Debug signals on page A-8.

Note
 For ETM signals and how to connect a core, see the ETM9 Technical Reference Manual.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. A-1

Signal Descriptions
A.1 Clock interface signals

The clock interface signals are given in Table A-1.

Table A-1 Clock interface signals

Name Direction Description

CLK

System clock

Input This clock times all operations in the ARM9E-S core.
All outputs change from the rising edge and all inputs
are sampled on the rising edge. The clock can be
stretched in either phase. Synchronous wait states can
be added using the CLKEN signal. Through the use
of the DBGTCKEN signal, this clock also times
debug operations.

CLKEN
Wait-state control

Input ARM9E-S core can be stalled for integer clock cycles
by driving CLKEN LOW. This signal must be held
HIGH at all other times.

CORECLKENOUT Output The principal state advance signal for the ARM9E-S
core.
A-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Signal Descriptions
A.2 Instruction memory interface signals

The instruction memory interface signals are shown in Table A-2.

Table A-2 Instruction memory interface signals

Name Direction Description

IA[31:1]

Instruction address

Output The processor instruction address bus.

IABORT

Instruction abort

Input This is an input that enables the memory system to
tell the processor that the requested instruction
memory access is not allowed.

INSTR[31:0]
Instruction data

Input This bus is used to transfer instructions between the
memory system and the processor.

DBGIEBKPT

Instruction breakpoint

Input This is an input that enables external hardware to
halt the execution of the processor for debug
purposes. If HIGH at the end of an instruction Fetch
it causes the ARM9E-S core to enter debug state if
that instruction reaches the Execute stage of the
processor pipeline.

InMREQ

Not instruction

memory request

Output If LOW at the end of the cycle, then the processor
requires a memory access during the following
cycle.

InM[4:0]

Instruction mode

Output These contain the current mode of the processor and
are valid with the address.

InTRANS
Not memory

translate

Output When LOW the processor is in User mode, when
HIGH the processor is in a privileged mode. This
signal is valid with the address.

ISEQ
Instruction Sequential

Output If HIGH at the end of the cycle then any instruction
memory access during the following cycle is
sequential from the last instruction memory access.

ITBIT

Instruction Thumb bit

Output When HIGH the processor is in Thumb state, when
LOW the processor is in ARM state. This signal is
valid with the address.

IKILL
Instruction kill

Output Indicates that an instruction request made in the
previous cycle is ignored.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. A-3

Signal Descriptions
A.3 Data memory interface signals

The data memory interface signals are shown in Table A-3.

Table A-3 Data memory interface signals

Name Direction Description

DA[31:0]

Data address

Output The processor data address bus.

DABORT

Data abort

Input This is an input that enables the memory system
to tell the processor that the requested data
memory access is not allowed.

RDATA [31:0]
Read data

Input This bus is used to transfer data between the
memory system and the processor during read
cycles (when DnRW is LOW).

WDATA [31: 0]

Write data

Output This bus is used to transfer data between the
memory system and the processor during write
cycles (when DnRW is HIGH).

DBGDEWPT

Data watchpoint

Input This is an input that enables external hardware
to halt the execution of the processor for debug
purposes. If HIGH at the end of a data memory
request cycle, it causes the ARM9E-S core to
enter debug state.

DLOCK

Data lock

Output If HIGH, then any data memory access in the
following cycle is locked, and the memory
controller must wait until DLOCK goes LOW
before enabling another device to access the
memory.

DMAS[1:0]

Data memory

access size

Output These encode the size of a data memory access
in the following cycle. A word access is encoded
as 10 (binary), a halfword access as 0l, and a
byte access as 00. The encoding 11 is reserved.

DMORE

Data more

Output If HIGH at the end of the cycle, then the data
memory access in the following cycle is directly
followed by a sequential data memory access.

DnMREQ
Not data memory

request

Output If LOW at the end the cycle, then the processor
requires a data memory access in the following
cycle.
A-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Signal Descriptions
DnM[4:0]
Data mode

Output The processor mode that any data memory
accesses must be performed in. Valid with the
data address.

DnRW

Data not read, write

Output If LOW at the end of the cycle, then any data
memory access in the following cycle is a read.
If HIGH then it is a write.

DnSPEC

Not data speculative
request

Output If LOW at the end of the cycle, then the
processor is indicating to the memory system
that the data stored at the memory location
specified by DA might be required in
subsequent cycles. DnSPEC is a speculative
signal, so the memory system does not have to
perform any action based on DnSPEC unless it
sees fit. The memory system must not return an
abort for a speculative access. DnSPEC is not
asserted in the same cycle as DnMREQ.

DnTRANS

Data not memory translate

Output If LOW at the end of a cycle, then any data
memory access must be performed with User
mode privileges. If HIGH it must have
Supervisor mode privileges.

DSEQ
Data sequential address

Output If HIGH at the end of the cycle, then any data
memory access in the following cycle is
sequential from the last data memory access.

DKILL

Data kill

Output Indicates that a data request made in the
previous cycle is ignored.

DBURST[3:0]

Data Burst

Output Indicates burst length of data transfers.

Table A-3 Data memory interface signals (continued)

Name Direction Description
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. A-5

Signal Descriptions
A.4 Miscellaneous signals

The miscellaneous signals are shown in Table A-4.

Table A-4 Miscellaneous signals

Name Direction Description

nFIQ

Not fast interrupt

Input This is the Fast Interrupt Request signal. This input is a
synchronous input to the core. It is not synchronized
internally to the core.

nIRQ

Not interrupt
request

Input This is the Interrupt Request signal. This input is a
synchronous input to the core. It is not synchronized
internally to the core.

CFGBIGEND

Big-endian
configuration

Input When HIGH, the ARM9E-S core treats bytes in memory
as being in big-endian format. When it is LOW, memory
is treated as little-endian. This is a static configuration
signal.

CFGDISLTBIT
ARMv5T
configuration

Input When HIGH, the ARM9E-S core disables certain
ARMv5T defined behavior involving loading data to the
PC. This input must be tied LOW for normal operation
and full ARMv5T compatibility. This is a static
configuration signal.

CFGHIVECS
High vectors
configuration

Input When LOW, the ARM9E-S exception vectors start at
address 0x0000 0000. When HIGH the ARM9E-S
exception vectors start at address 0xFFFF 0000. This is a
static configuration signal.

CFGTHUMB32 Input If HIGH, then the ARM9E-S core issues 32-bit fetches in
Thumb state. If LOW, then the ARM9E-S core
issues16-bit fetches in Thumb state.

nRESET
Not reset

Input This active LOW reset signal is used to start the processor
from a known address. This signal can be asserted
asynchronously but must be deasserted synchronously.

FIQDIS

FIQ disabled

Output When HIGH, indicates that the ARM9E-S core is
insensitive to the state of the nFIQ input signal.

IRQDIS

IRQ disabled

Output When HIGH, indicates that the ARM9E-S core is
insensitive to the state of the nIRQ input signal.

PADV Output When HIGH, there is a pipeline advance.
A-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Signal Descriptions
A.5 Coprocessor interface signals

The coprocessor interface signals are shown in Table A-5.

Table A-5 Coprocessor interface signals

Name Direction Description

PASS Output This signal indicates that there is a coprocessor
instruction in the Execute stage of the pipeline, and
it must be executed.

CHSD[1:0]

Coprocessor handshake
decode

Input The handshake signals from the Decode stage of
the pipeline follower of the coprocessor.

CHSE[1:0]

Coprocessor handshake
execute

Input The handshake signals from the Execute stage of
the pipeline follower of the coprocessor.

LATECANCEL
Coprocessor late cancel

Output If HIGH during the first memory cycle of a
coprocessor instruction, then the coprocessor must
cancel the instruction without changing any
internal state. This signal is only asserted in cycles
where the previous instruction accessed memory
and a Data Abort occurred.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. A-7

Signal Descriptions
A.6 Debug signals

The debug signals are shown in Table A-6.

Table A-6 Debug signals

Name Direction Description

DBGIR[3:0]

TAP controller
instruction register

Output These four bits reflect the current instruction loaded
into the TAP controller instruction register. These bits
change when the TAP state machine is in the
UPDATE-IR state.

DBGnTRST
Not test reset

Input This is the active LOW reset signal for the
EmbeddedICE internal state. This signal can be
asserted asynchronously but must be deasserted
synchronously.

DBGnTDOEN

Not DBGTDO
enable

Output When LOW, this signal denotes that serial data is
being driven out on the DBGTDO output.
DBGnTDOEN is usually used as an output enable for
a DBGTDO pin in a packaged part.

DBGSCREG[4:0]

Scan chain select
number

Output These five bits reflect currently selected scan chain by
the TAP Scan Chain Register controller. These bits
change when the TAP state machine is in the
UPDATE-DR state.

DBGSDIN
Output boundary

scan serial input data

Output This signal contains the serial data to be applied to an
external scan chain.

DBGSDOUT
Input boundary

scan serial output
data

Input This is the serial data out of an external scan chain.
When an external boundary scan chain is not
connected, this input must be tied LOW.

DBGTAPSM[3:0]

TAP controller state
machine

Output This bus reflects the current state of the TAP controller
state machine.

DBGTCKEN Input Synchronous enable for debug logic accessed using
the JTAG interface.

DBGTDI Input Test data input to the debug logic.

DBGTDO Output Output from the debug logic.

DBGTMS Input Test mode select for the TAP controller.
A-8 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Signal Descriptions
DBGCOMMRX
Communications
channel receive

Output When HIGH, this signal denotes that the comms
channel receive buffer contains valid data waiting to be
read by the ARM9E-S core.

DBGCOMMTX

Communications
channel transmit

Output When HIGH, this signal denotes that the comms
channel transmit buffer is empty.

DBGACK

Debug acknowledge

Output When HIGH, indicates that the processor is in debug
state.

DBGEN

Debug enable

Input A static configuration signal that disables the debug
features of the processor when held LOW. This signal
must be HIGH to enable the EmbeddedICE logic to
function.

DBGRQI

Internal debug
request

Output This signal represents the state of bit 1 of the debug
control register that is combined with EDBGRQ and
presented to the core debug logic.

EDBGRQ

External debug
request

Input An external debugger can force the processor to enter
debug state by asserting this signal.

DBGEXT[1:0]

EmbeddedICE
external input

Input This input to the EmbeddedICE logic enables
breakpoints and watchpoints to be dependent on
external conditions.

DBGINSTREXEC

Instruction executed

Output Indicates that the instruction in the Execute stage of
the processors pipeline has been executed.

DBGINSTRVALID

Instruction valid

Output Indicates that the instruction in the Execute stage of
the processors pipeline was valid and has been
executed (unless it failed its conditions codes).

Table A-6 Debug signals (continued)

Name Direction Description
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. A-9

Signal Descriptions
DBGRNG[1:0]
EmbeddedICE
Rangeout

Output This output indicates that the corresponding
EmbeddedICE watchpoint unit has matched the
conditions currently present on the address, data, and
control buses. This signal is independent of the state of
the enable control bit of the watchpoint unit.

TAPID[31:0]
Boundary scan ID
code

Input This input specifies the ID code value shifted out on
DBGTDO when the IDCODE instruction is entered
into the TAP controller.

THUMBHW Output Indicates which Thumb halfword progresses into
decode. It has the same cycle timing as IA. Used for
external breakpoints when CFGTHUMB32 is HIGH.

Table A-6 Debug signals (continued)

Name Direction Description
A-10 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Appendix B
Debug in depth

This appendix describes in further detail the debug features of the ARM9E-S core, and
includes additional information about the EmbeddedICE-RT logic. It contains the
following sections:

• Scan chains and JTAG interface on page B-2

• Resetting the TAP controller on page B-5

• Instruction register on page B-6

• Public instructions on page B-7

• Test data registers on page B-10

• ARM9E-S core clock domains on page B-17

• Determining the core and system state on page B-18

• Behavior of the program counter during debug on page B-23

• Priorities and exceptions on page B-26

• EmbeddedICE-RT logic on page B-27

• Vector catching on page B-39

• Coupling breakpoints and watchpoints on page B-40

• Disabling EmbeddedICE-RT on page B-43

• EmbeddedICE-RT timing on page B-44.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-1

Debug in depth
B.1 Scan chains and JTAG interface

There are two JTAG-style scan chains within the ARM9E-S core. These enable
debugging and EmbeddedICE-RT programming.

The scan chains enable commands to be serially shifted into the ARM core, enabling
the state of the core and the system to be interrogated. The JTAG interface requires only
five pins on the package.

A JTAG style Test Access Port (TAP) controller controls the scan chains. For further
details of the JTAG specification, see IEEE Standard 1149.1 - 1990 Standard Test
Access Port and Boundary-Scan Architecture.

B.1.1 Debug scan chains

The two scan paths used for debug purposes are referred to as scan chain 1 and scan
chain 2, and are shown in Figure B-1.

Figure B-1 ARM9E-S core scan chain arrangements

Scan chain 1

Scan chain 1 is used for debugging the ARM9E-S core when it has entered debug state.
You can use it to:

• inject instructions into the ARM pipeline

TAP controller

Main processor
logic

EmbeddedICE-RT

ARM9E-S

Scan chain 2

S
c
a
n

c
h
a
in

1

ETM
interface
B-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
• read and write its registers

• perform memory accesses.

Scan chain 2

Scan chain 2 allows access to the EmbeddedICE-RT registers. See Test data registers
on page B-10 for details.

B.1.2 TAP state machine

The process of serial test and debug is best explained in conjunction with the JTAG state
machine. Figure B-2 on page B-4 shows the state transitions that occur in the TAP
controller. The state numbers shown in the diagram are output from the ARM9E-S core
on the DBGTAPSM[3:0] bits.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-3

Debug in depth
Figure B-2 Test access port controller state transitions1

1. From IEEE Std 1149.1-1990. Copyright 1999 IEEE. All rights reserved.

Select-DR-Scan
0x7

Capture-DR
0x6

Shift-DR
0x2

Exit1-DR
0x1

Pause-DR
0x3

Exit2-DR
0x0

Update-DR
0x5

Run-Test/Idle
0xC

Test-Logic-Reset
0xF

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1

Select-IR-Scan
0x4

Capture-IR
0xE

Shift-IR
0xA

Exit1-IR
0x9

Pause-IR
0xB

Exit2-IR
0x8

Update-IR
0xD

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1

tms=0 tms=0

tms=0 tms=0

tms=1

tms=0

tms=1
tms=0

tms=1

tms=1

tms=0

tms=1 tms=1

tms=1 tms=0 tms=1 tms=0

tms=1

tms=1

tms=0
B-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
B.2 Resetting the TAP controller

The boundary-scan interface includes a state machine controller called the TAP
controller. To force the TAP controller into the correct state after power-up, you must
apply a reset pulse to the DBGnTRST signal:

• to ready the boundary-scan interface for use, drive DBGnTRST LOW, and then
HIGH again

• to prevent the boundary scan interface from being used, the DBGnTRST input
can be tied permanently LOW.

Note
 A clock on CLK with DBGTCKEN HIGH is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected. This means that the boundary-scan cells do not intercept
any of the signals passing between the external system and the core.

2. The IDCODE instruction is selected. When the TAP controller is put into the
SHIFT-DR state, and CLK is pulsed while enabled by DBGTCKEN, the
contents of the ID register are clocked out of DBGTDO.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-5

Debug in depth
B.3 Instruction register

The instruction register is four bits in length.

There is no parity bit.

The fixed value b0001 is loaded into the instruction register during the CAPTURE-IR
controller state.
B-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
B.4 Public instructions

Instructions are loaded into the TAP state machine by scanning the appropriate bit
pattern for the instruction when the TAP controller is in the SHIFT-IR state, and then
advancing the TAP controller through the UPDATE-IR state.

Table B-1 shows the public instructions.

In the following descriptions, the ARM9E-S core samples DBGTDI and DBGTMS on
the rising edge of CLK with DBGTCKEN HIGH. All output transitions on DBGTDO
occur as a result of the rising edge of CLK with DBGTCKEN HIGH.

B.4.1 EXTEST (b0000)

The EXTEST instruction enables a boundary scan chain to be connected between the
DBGSDIN and DBGSDOUT pins. External logic, based on the DBGTAPSM,
DBGSCREG, and DBGIR signals is required to use the EXTEST function for such a
boundary scan chain. Using EXTEST with scan chain 1 or scan chain 2 selected is
UNPREDICTABLE.

B.4.2 SAMPLE/PRELOAD (b0011)

You must use this instruction to preload the boundary scan register with known data
prior to selecting INTEST or EXTEST instructions.

Table B-1 Public instructions

Instruction Binary code Hex code

EXTEST b0000 0x0

SAMPLE/PRELOAD b0011 0x3

SCAN_N b0010 0x2

INTEST b1100 0xC

IDCODE b1110 0xE

BYPASS b1111 0xF

RESTART b0100 0x4
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-7

Debug in depth
B.4.3 SCAN_N (b0010)

The SCAN_N instruction connects the scan path select register between DBGTDI and
DBGTDO:

• In the CAPTURE-DR state, the fixed value 10000 is loaded into the register.

• In the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

• In the UPDATE-DR state, the scan register of the selected scan chain is connected
between DBGTDI and DBGTDO, and remains connected until a subsequent
SCAN_N instruction is issued.

• On reset, scan chain 3 is selected by default.

The scan path select register is 5 bits long in this implementation, although no finite
length is specified.

B.4.4 INTEST (b1100)

The INTEST instruction places the selected scan chain in test mode:

• The INTEST instruction connects the selected scan chain between DBGTDI and
DBGTDO.

• When the INTEST instruction is loaded into the instruction register, all the scan
cells are placed in their test mode of operation. For example, in test mode, input
cells select the output of the scan chain to be applied to the core.

• In the CAPTURE-DR state, the value of the data applied from the core logic to
the output scan cells, and the value of the data applied from the system logic to
the input scan cells is captured.

• In the SHIFT-DR state, the previously-captured test data is shifted out of the scan
chain through the DBGTDO pin, while new test data is shifted in through the
DBGTDI pin.

Single-step operation of the core is possible using the INTEST instruction.

B.4.5 IDCODE (b1110)

The IDCODE instruction connects the device identification code register (or
ID register) between DBGTDI and DBGTDO. The ID register is a 32-bit register that
enables the manufacturer, part number, and version of a component to be read through
the TAP. See ARM9E-S core device identification (ID) code register on page B-10 for
details of the ID register format.
B-8 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
When the IDCODE instruction is loaded into the instruction register, all the scan cells
are placed in their normal (System) mode of operation:

• In the CAPTURE-DR state, the device identification code is captured by the ID
register.

• In the SHIFT-DR state, the previously captured device identification code is
shifted out of the ID register through the DBGTDO pin, while data is shifted into
the ID register through the DBGTDI pin.

• In the UPDATE-DR state, the ID register is unaffected.

B.4.6 BYPASS (b1111)

The BYPASS instruction connects a 1-bit shift register (the bypass register) between
DBGTDI and DBGTDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells
assume their normal (System) mode of operation. The BYPASS instruction has no
effect on the system pins:

• In the CAPTURE-DR state, a logic 0 is captured in the bypass register.

• In the SHIFT-DR state, test data is shifted into the bypass register through
DBGTDI, and shifted out through DBGTDO after a delay of one CLK cycle.
The first bit to shift out is a zero.

• The bypass register is not affected in the UPDATE-DR state.

All unused instruction codes default to the BYPASS instruction.

B.4.7 RESTART (b0100)

The RESTART instruction is used to restart the processor on exit from debug state. The
RESTART instruction connects the bypass register between DBGTDI and DBGTDO,
and the TAP controller behaves as if the BYPASS instruction has been loaded.

The processor exits debug state when the RUN-TEST/IDLE state is entered.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-9

Debug in depth
B.5 Test data registers

There are six test data registers that can be selected to connect between DBGTDI and
DBGTDO:

• bypass register

• ID code register

• instruction register

• scan path select register

• scan chain 1

• scan chain 2.

In addition, other scan chains can be added between DBGSDOUT and DBGSDIN, and
selected when in INTEST mode.

In the following descriptions, data is shifted during every CLK cycle when
DBGTCKEN enable is HIGH.

B.5.1 Bypass register

The Bypass register purpose, bit length, and operating mode description is given below:

Purpose Bypasses the device during scan testing by providing a path
between DBGTDI and DBGTDO.

Length 1 bit.

Operating mode When the BYPASS instruction, or any undefined instruction, is
the current instruction in the instruction register, serial data is
transferred from DBGTDI to DBGTDO in the SHIFT-DR state
with a delay of one CLK cycle enabled by DBGTCKEN.

A logic 0 is loaded from the parallel input of the bypass register in
the CAPTURE-DR state. There is no parallel output from the
bypass register.

B.5.2 ARM9E-S core device identification (ID) code register

The ARM9E-S core device identification (ID) code register purpose, bit length, and
operating mode description is given below:

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.
B-10 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
Length 32 bits. The format of the ID register is shown in Figure B-3.The
32-bit device identification code is loaded into the register from
the parallel inputs of the TAPID[31:0] input pins during the
CAPTURE-DR state. The default value for TAPID[31:0] in a
base ARM9E-S core implementation is 0x25900477. Set your
TAPID according to the rules contained in Application Note 99 -
Core Type and Revision Information.

Figure B-3 ID code register format

Note
 IEEE Standard 1149.1 requires that bit 0 of the ID register be set to 1.

Operating mode When the IDCODE instruction is current, the ID register is
selected as the serial path between DBGTDI and DBGTDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register
from its parallel inputs during the CAPTURE-DR state.

B.5.3 Instruction register

The Instruction register purpose, bit length, and operating mode description is given
below:

Purpose Specifies a TAP instruction.

Length 4 bits.

Operating mode In the SHIFT-IR state, the instruction register is selected as the
serial path between DBGTDI and DBGTDO.

During the CAPTURE-IR state, the binary value b0001 is loaded
into this register. This value is shifted out during SHIFT-IR (least
significant bit first), while a new instruction is shifted in (least
significant bit first).

During the UPDATE-IR state, the value in the instruction register
specifies the current instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

Version Part number Manufacturer identity
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-11

Debug in depth
On reset, IDCODE specifies the current instruction.

B.5.4 Scan path select register

The Scan path select register purpose, bit length, and operating mode description is
given below:

Purpose Changes the current active scan chain.

Length 5 bits.

Operating mode SCAN_N as the current instruction in the SHIFT-DR state selects
the scan path select register as the serial path between DBGTDI
and DBGTDO.

During the CAPTURE-DR state, the value b10000 is loaded into
this register. This value is shifted out during SHIFT-DR (least
significant bit first), while a new value is shifted in (least
significant bit first). During the UPDATE-DR state, the value in
the scan path select register selects a scan chain to become the
currently active scan chain. All further instructions such as
INTEST then apply to that scan chain.

The currently selected scan chain changes only when a SCAN_N
instruction is executed, or when a reset occurs. On reset, scan
chain 3 is selected as the active scan chain.

The number of the currently-selected scan chain is reflected on the
DBGSCREG[4:0] output bus. You can use the TAP controller to
drive external chains in addition to those within the ARM9E-S
macrocell. The external scan chain is connected between
DBGSDIN and DBGSDOUT, and must be assigned a number.
The control signals are derived from DBGSCREG[4:0],
DBGIR[4:0], DBGTAPSM[3:0] and the clock, CLK, and clock
enable, DBGTCKEN.

Table B-2 shows the scan chain numbers allocated by ARM.

Table B-2 Scan chain number allocation

Scan chain number Function

0 Reserved

1 Debug

2 EmbeddedICE-RT programming
B-12 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
The scan chain present between DBGSDIN and DBGSDOUT is connected between
DBGTDI and DBGTDO whenever scan chain 3 is selected, or when any unassigned
scan chain number is selected. If there is more than one external scan chain, a
multiplexor must be built externally to apply the desired scan chain output to
DBGSDOUT. The multiplexor can be controlled by decoding DBGSCREG[4:0].

B.5.5 Scan chains 1 and 2

The scan chains enable serial access to the core logic and to the EmbeddedICE
hardware for programming purposes. Each scan chain cell is simple, and comprises a
serial register and a multiplexor. A typical cell is shown in Figure B-4.

Figure B-4 Typical scan chain cell

The scan cells perform three basic functions:

• capture

3 External boundary scan

4–15 Reserved

16–31 Unassigned

Table B-2 Scan chain number allocation (continued)

Scan chain number Function

Test mode
select

Shift
enable

Serial data in

Serial data out

1

0

1

0

CLK
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-13

Debug in depth
• shift

• update.

For input cells, the capture stage involves copying the value of the system input to the
core into the serial register. During shift, this value is output serially. The value applied
to the core from an input cell is either the system input or the contents of the parallel
register (loads from the shift register after UPDATE-DR state) under multiplexor
control.

For output cells, capture involves placing the value of a core output into the serial
register. During shift, this value is serially output as before. The value applied to the
system from an output cell is either the core output or the contents of the serial register.

All the control signals for the scan cells are generated internally by the TAP controller.
The action of the TAP controller is determined by current instruction and the state of the
TAP state machine.

Scan chain 1

The scan chain 1 purpose, bit length, and description is given below:

Purpose Scan chain 1 is used for communication between the debugger and
the ARM9E-S core. It is used to read and write data, and to scan
instructions into the instruction pipeline. The SCAN_N
instruction is used to select scan chain 1.

Length 67 bits.

Scan chain 1 provides serial access to RDATA[31:0] when the core is doing a read, and
to the WDATA[31:0] bus when the core is doing a write. It also provides serial access
to the INSTR[31:0] bus, and to the control bits, SYSPEED and WPTANDBKPT. For
compatibility with the ARM9TDMI core, there is one additional unused bit that must
be zero when writing, and is UNPREDICTABLE when reading.

There are 67 bits in this scan chain, the order being (from serial data in to out):

1. INSTR[31:0].
2. SYSPEED.

3. WPTANDBKPT.

4. Unused bit.

5. RDATA[31:0] or WDATA[31:0].

Bit 0 of RDATA or WDATA is therefore the first bit to be shifted out.
B-14 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
Table B-3 shows the bit allocations for scan chain 1.

The scan chain order is the same as for the ARM9TDMI core. The unused bit is to retain
compatibility with ARM9TDMI core.

The two control bits serve the following purposes:

• While debugging, the value placed in the SYSSPEED control bit determines
whether the ARM9E-S core synchronizes back to system speed before executing
the instruction. See System speed access on page B-25 for further details.

• After the ARM9E-S core has entered debug state, the first time SYSSPEED is
captured and scanned out, its value tells the debugger whether the core has entered
debug state from a breakpoint (SYSSPEED LOW), or a watchpoint (SYSSPEED
HIGH). If the instruction directly following one which causes a watchpoint has a
breakpoint set on it, then the WPTANDBKPT bit is set. This situation does not
affect how to restart the code.

• For a read the data value taken from the 32 bits in the scan chain allocated for data
is used to deliver the RDATA[31:0] value to the core.

• When a write is being performed by the processor the WDATA[31:0] value is
returned in the data part of the scanned out value.

Table B-3 Scan chain 1 bit order

Bit number Function Type

66 RDATA[0]

/WDATA[0]

Bidir

... ... Bidir

35 RDATA[31]

/WDATA[31]

Bidir

34 Unused -

33 WPTANDBKPT Input

32 SYSSPEED Input

31 INSTR[31] Input

... ... Input

0 INSTR[0] Input
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-15

Debug in depth
Scan chain 2

The scan chain 2 purpose, bit length, scan chain order and operation description is given
below:

Purpose Scan chain 2 enables access to the EmbeddedICE registers. To do
this, scan chain 2 must be selected using the SCAN_N instruction,
and then the TAP controller instruction must be changed to
INTEST.

Length 38 bits.

Scan chain order From DBGTDI to DBGTDO. Read/write, register address bits 4
to 0, data values bits 31 to 0.

No action occurs during CAPTURE-DR.

During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 specify
the address of the EmbeddedICE register to be accessed.

During UPDATE-DR, this register is either read or written depending on the value of
bit 37 (0 = read, 1 = write).
B-16 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
B.6 ARM9E-S core clock domains

The ARM9E-S core has a single clock, CLK, that is qualified by two clock enables:

• CLKEN controls access to the memory system

• DBGTCKEN controls debug operations.

During normal operation, CLKEN conditions CLK to clock the core. When the
ARM9E-S core is in debug state, DBGTCKEN conditions CLK to clock the core.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-17

Debug in depth
B.7 Determining the core and system state

When the ARM9E-S core is in debug state, you can examine the core and system state
by forcing the load and store multiples into the instruction pipeline.

Before examining the core and system state, the debugger must determine whether the
processor entered debug from Thumb state or ARM state by examining bits 4 and 5 of
the EmbeddedICE-RT debug status register. When bit 4 is HIGH, the core has entered
debug from Thumb state. When bit 4 and 5 is LOW the core has entered debug from
ARM state.

B.7.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest method is
for the debugger to force the core back into ARM state. The debugger can then execute
the same sequence of instructions to determine the processor state.

To force the processor into ARM state, execute the following sequence of Thumb
instructions on the core (with the SYSSPEED bit set LOW):

STR R0, [R1]; Save R0 before use
MOV R0, PC ; Copy PC into R0
STR R0, [R1]; Now save the PC in R0
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP
MOV R8, R8 ; NOP

Note
 Because all Thumb instructions are only 16 bits long, the simplest method, when
shifting scan chain 1, is to repeat the instruction. For example, the encoding for BX R0 is
0x4700, so when 0x47004700 shifts into scan chain 1, the debugger does not have to keep
track of the half of the bus on which the processor expects to read the data.

You can use the sequences of ARM instructions shown in Example B-1 on page B-19
to determine the processor state.

With the processor in the ARM state, typically the first instruction to execute is:

STMIA R0, {R0-R15}

This instruction causes the contents of the registers to appear on the data bus. You can
then sample and shift out these values.
B-18 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
Note
 The use of r0 as the base register for the STM is only for illustration, and you can use any
register.

After you have determined the values in the bank of registers available in the current
mode, you might want to access the other banked registers. To do this, you must change
mode. Normally, a mode change can occur only if the core is already in a privileged
mode. However, while in debug state, a mode change can occur from any mode into any
other mode.

The debugger must restore the original mode before exiting debug state. For example,
if the debugger has been requested to return the state of the User mode registers and FIQ
mode registers, and debug state is entered in Supervisor mode, the instruction sequence
can be as shown in Example B-1.

Example B-1 Determining the core state

STMIA R0, {R0-R15} ; Save current registers
MRS R0, CPSR
STR R0, [R0] ; Save CPSR to determine current mode
BIC R0, 0x1F ; Clear mode bits
ORR R0, 0x10 ; Select User mode
MSR CPSR, R0 ; Enter User mode
STMIA R0, {R13,R14} ; Save registers not previously visible
ORR R0, 0x01 ; Select FIQ mode
MSR CPSR, R0 ; Enter FIQ mode
STMIA R0, {R8-R14} ; Save banked FIQ registers

All these instructions execute at debug speed. Debug speed is much slower than system
speed. This is because between each core clock, 67 clocks occur to shift in an
instruction, or shift out data. Executing instructions this slowly is acceptable for
accessing the core state because the ARM9E-S core is fully static. However, you cannot
use this method for determining the state of the rest of the system.

While in debug state, you can only scan the following ARM or Thumb instructions into
the instruction pipeline for execution:

• all data processing operations

• all load, store, load multiple, and store multiple instructions

• MSR and MRS

• B, BL, and BX.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-19

Debug in depth
B.7.2 Determining the system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur synchronously. Therefore, the ARM9E-S core must be forced
to synchronize back to system speed. Bit 32 of scan chain 1, SYSSPEED, controls this.

You can place a legal debug instruction onto the instruction data bus of scan chain 1 with
bit 32 (the SYSSPEED bit) LOW. This instruction is then normally executed at debug
speed. To execute an instruction at system speed, a NOP (such as MOV R0, R0) must be
scanned in as the next instruction with bit 32 set HIGH.

After the system speed instructions are scanned into the instruction data bus and clocked
into the pipeline, the RESTART instruction must be loaded into the TAP controller. This
causes the ARM9E-S core automatically to resynchronize back to CLK conditioned
with CLKEN when the TAP controller enters RUN-TEST/IDLE state, and executes the
instruction at system speed. Debug state is reentered when the instruction completes
execution, when the processor switches itself back to CLK conditioned with
DBGTCKEN. When the instruction completes, DBGACK is HIGH. At this point
INTEST can be selected in the TAP controller, and debugging can resume.

To determine if a system speed instruction has completed, the debugger must look at
SYSCOMP (bit 3 of the debug status register). The ARM9E-S core must access
memory through the data data bus interface, as this access can be stalled indefinitely by
CLKEN. Therefore, the only way to determine if the memory access has completed is
to examine the SYSCOMP bit. When this bit is HIGH, the instruction has completed.

The state of the system memory can be fed back to the debug host by using system speed
load multiples and debug speed store multiples.

Instructions that can have the SYSSPEED bit set

There are restrictions on which instructions can have the SYSSPEED bit set. The valid
instructions on which to set this bit are:

• loads

• stores

• load multiple

• store multiple.

When the ARM9E-S core returns to debug state after a system speed access, the
SYSSPEED bit is set LOW. The state of this bit gives the debugger information about
why the core entered debug state the first time this scan chain is read.
B-20 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
B.7.3 Exit from debug state

Leaving debug state involves:

• restoring the internal state of the ARM9E-S core

• causing a branch to the next instruction to be executed

• synchronizing back to CLK conditioned with CLKEN.

After restoring the internal state, a branch instruction must be loaded into the pipeline.
See Behavior of the program counter during debug on page B-23 for details on
calculating the branch.

The SYSSPEED bit of scan chain 1 forces the ARM9E-S core to resynchronize back to
CLK conditioned with CLKEN. The penultimate instruction in the debug sequence is
a branch to the instruction at which execution is to resume. This is scanned in with bit
32 (SYSSPEED) set LOW. The final instruction to be scanned in is a NOP (such as MOV
R0, R0), with bit 32 set HIGH. The core is then clocked to load this instruction into the
pipeline.

Next, the RESTART instruction is selected in the TAP controller. When the state
machine enters the RUN-TEST/IDLE state, the scan chain reverts back to System
mode, and clock resynchronization to CLK conditioned with CLKEN occurs within
the ARM9E-S core. Normal operation then resumes, with instructions being fetched
from memory.

The delay, waiting until the state machine is in RUN-TEST/IDLE state, enables
conditions to be set up in other devices in a multiprocessor system without taking
immediate effect. Then, when RUN-TEST/IDLE state is entered, all the processors
resume operation simultaneously.

The function of DBGACK is to tell the rest of the system when the ARM9E-S core is
in debug state. You can use this signal to inhibit peripherals such as watchdog timers
that have real-time characteristics. Also, you can use DBGACK to mask out memory
accesses that are caused by the debugging process. For example, when the ARM9E-S
core enters debug state after a breakpoint, the instruction pipeline contains the
breakpointed instruction plus two other instructions that have been prefetched. On entry
to debug state, the pipeline is flushed. So, on exit from debug state, the pipeline must be
refilled to its previous state. Therefore, because of the debugging process, more memory
accesses occur than are normally expected. It is possible, using the DBGACK signal
and a small amount of external logic, for a peripheral which is sensitive to the number
of memory accesses to return the same result with and without debugging.

Note
 You can only use DBGACK in such a way using breakpoints. It does not mask the
correct number of memory accesses after a watchpoint.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-21

Debug in depth
For example, consider a peripheral that simply counts the number of instruction fetches.
This device must return the same answer after a program has run both with and without
debugging.

Figure B-5 shows the behavior of the ARM9E-S core on exit from debug state.

Figure B-5 Debug exit sequence

In Figure B-6 on page B-29, two instructions are fetched after the instruction that
breakpoints. Figure B-5 shows that DBGACK masks the first three instruction fetches
out of the debug state, corresponding to the breakpoint instruction, and the two
instructions prefetched after it.

Under some circumstances DBGACK can remain HIGH for more than three instruction
fetches. Therefore, if you require precise instruction access counting, you must provide
some external logic to generate a modified DBGACK that always falls after three
instruction fetches.

Note
 When system speed accesses occur, DBGACK remains HIGH throughout. It then falls
after the system speed memory accesses are completed, and finally rises again as the
processor reenters debug state. Therefore, DBGACK masks all system speed memory
accesses.

N S S

CLK

InMREQ
ISEQ

IA[31:1]

DBGACK

INSTR[31:0]

Internal Cycles

IAb IAb+4 IAb+8
B-22 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
B.8 Behavior of the program counter during debug

The debugger must keep track of what happens to the PC, so that you can force the
ARM9E-S core to branch back to the place at which program flow was interrupted by
debug. Program flow can be interrupted by any of the following:

• a breakpoint

• a watchpoint

• a watchpoint when another exception occurs

• a debug request

• a system speed access.

B.8.1 ARM and Thumb state breakpoints

Entry to debug state from a breakpointed instruction advances the PC by 16 bytes in
ARM state, or 8 bytes in Thumb state. Each instruction executed in debug state
advances the PC by one address (4 bytes). The normal way to exit from debug state after
a breakpoint is to remove the breakpoint and branch back to the previously breakpointed
address.

For example, if the ARM9E-S core entered debug state from a breakpoint set on a given
address and two debug speed instructions were executed, a branch of seven addresses
must occur (four for debug entry, plus two for the instructions, plus one for the final
branch). The following sequence shows ARM instructions scanned into scan chain 1.
This is the Most Significant Bit (MSB) first, so the first digit represents the value to be
scanned into the SYSSPEED bit, followed by the instruction:

0 EAFFFFF9 ; B -7 addresses (two’s complement)
1 E1A00000 ; NOP (MOV R0, R0), SYSSPEED bit is set

After the ARM9E-S core enters debug state, it must executea minimum of two
instructions before the branch, although these can both be NOPs (MOV R0, R0). For small
branches, you can replace the final branch with a subtract, with the PC as the destination
(SUB PC, PC, #28 in the above example).

B.8.2 ARM and Thumb state watchpoints

To return to program execution after entry to debug state from a watchpoint, use the
same procedure described in ARM and Thumb state breakpoints.

Debug entry adds four addresses to the PC, and every instruction adds one address. The
difference from breakpoint is that the instruction that caused the watchpoint has
executed, and the program must return to the next instruction.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-23

Debug in depth
B.8.3 Watchpoint with another exception

If a watchpointed access also has a Data Abort returned, the ARM9E-S core enters
debug state in Abort mode. Entry into debug is held off until the core changes into Abort
mode, and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a
watchpointed memory access. The ARM9E-S core enters debug state in the mode of the
exception. The debugger must check to see if an exception has occurred by examining
the current and previous mode (in the CPSR and SPSR), and the value of the PC. When
an exception has taken place, you must be given the choice of servicing the exception
before debugging.

For example, suppose that an abort has occurred on a watchpointed access and ten
instructions have been executed in debug state. You can use the following sequence to
return to program execution:

0 EAFFFFF1 ; B -15 addresses (two’s complement)
1 E1A00000 ; NOP (MOV R0, R0), SYSSPEED bit is set

This code forces a branch back to the abort vector, causing the instruction at that
location to be refetched and executed.

Note
 After the abort service routine, the instruction that caused the abort and watchpoint is
refetched and executed. This triggers the watchpoint again, and the ARM9E-S core
reenters debug state.

B.8.4 Watchpoint and breakpoint

It is possible to have a watchpoint and breakpoint condition occurring simultaneously.
This can happen when an instruction causes a watchpoint, and the following instruction
has been breakpointed. You must perform the same calculation as for ARM and Thumb
state breakpoints on page B-23 to determine where to resume. In this case, it is at the
breakpoint instruction, because this has not been executed.

B.8.5 Debug request

Entry into debug state through a debug request is similar to a breakpoint. Entry to debug
from ARM or Thumb state adds four addresses to the PC, and every instruction
executed in debug state adds one address, and from Jazelle state adds four bytes.

For example, the following sequence handles a situation in which the user has invoked
a debug request when in ARM or Thumb state, and then decides to return to program
execution immediately:
B-24 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
0 EAFFFFFB ; B -5 addresses (2’s complement)
1 E1A00000 ; NOP (MOV R0, R0), SYSSPEED bit is set

This code restores the PC, and restarts the program from the next instruction.

B.8.6 System speed access

When a system speed access is performed during debug state, the value of the PC
increases by five addresses. System speed instructions access the memory system, and
so it is possible for aborts to take place. If an abort occurs during a system speed
memory access, the ARM9E-S core enters Abort mode before returning to debug state.

This scenario is similar to an aborted watchpoint, but the problem is much harder to fix
because the abort is not caused by an instruction in the main program, and so the link
register does not point to the instruction that caused the abort. An abort handler usually
looks at the link register to determine the instruction that caused the abort, and the abort
address. In this case, the value of the link register is invalid, but because the debugger
can determine which location was being accessed, you can write the debugger to help
the abort handler fix the memory system.

B.8.7 Summary of return address calculations

The calculation of the branch return address when entered from ARM or Thumb state
can be summarized as:

PC-(4+N+5S)

where N is the number of debug speed instructionsexecuted (including the final branch),
and S is the number of system speed instructions executed.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-25

Debug in depth
B.9 Priorities and exceptions

When a breakpoint or a debug request occurs, the normal flow of the program is
interrupted. Therefore you can treat debug as another type of exception. The interaction
of the debugger with other exceptions is described in Behavior of the program counter
during debug on page B-23. This section covers the priorities.

B.9.1 Breakpoint with Prefetch Abort

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken and
the breakpoint is disregarded. Normally, Prefetch Aborts occur when, for example, an
access is made to a virtual address that does not physically exist, and the returned data
is therefore invalid. In such a case, the normal action of the operating system is to swap
in the page of memory, and to return to the previously invalid address. This time, when
the instruction is fetched, and providing the breakpoint is activated (it might be
data-dependent), the ARM9E-S core enters debug state.

The Prefetch Abort, therefore, takes higher priority than the breakpoint.

B.9.2 Interrupts

When the ARM9E-S core enters debug state, interrupts are automatically disabled.

If an interrupt is pending during the instruction prior to entering debug state, the
ARM9E-S core enters debug state in the mode of the interrupt. On entry to debug state,
the debugger cannot assume that the ARM9E-S core is in the mode expected by your
program. The ARM9E-S core must check the PC, the CPSR, and the SPSR to determine
accurately the reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM9E-S core does
recognize that an interrupt has occurred.

B.9.3 Data Aborts

When a Data Abort occurs on a watchpointed access, the ARM9E-S core enters debug
state in Abort mode. The watchpoint, therefore, has higher priority than the abort, but
the ARM9E-S core remembers that the abort happened.
B-26 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
B.10 EmbeddedICE-RT logic

The EmbeddedICE-RT logic is integral to the ARM9E-S core. It has two hardware
breakpoint or watchpoint units, each of which can be configured to monitor either the
instruction memory interface or the data memory interface. Each watchpoint unit has
registers that set the address, data, and control fields for both values and masks. The
registers used are shown in Table B-4.

Because the ARM9E-S core has a Harvard Architecture, you must specify whether the
watchpoint unit examines the instruction or the data interface. This is specified by bit 3
of the control value register:

• when bit 3 is set, the data interface is examined

• when bit 3 is clear, the instruction interface is examined.

There cannot be a don’t care case for bit 3 because the comparators cannot compare the
values on both buses simultaneously. Therefore, bit 3 of the control mask register is
always clear and cannot be programmed HIGH. Bit 3 also determines whether the
internal IBREAKPT or DWPT signal must be driven by the result of the comparison.
Figure B-6 on page B-29 gives an overview of the operation of the EmbeddedICE-RT
logic.

The general arrangement of the EmbeddedICE-RT logic is shown in Figure B-6 on
page B-29.

B.10.1 Register map

The EmbeddedICE-RT logic register map is shown in Table B-4.

Table B-4 ARM9E-S core EmbeddedICE-RT logic register map

Address Width Function Type

b00000 6 Debug control Read/write

b00001 5 Debug status Read-only

b00010 8 Vector catch control Read/write

b00100 6 Debug comms control Read-onlya

b00101 32 Debug comms data Read/write

b01000 32 Watchpoint 0 address value Read/write

b01001 32 Watchpoint 0 address mask Read/write

b01010 32 Watchpoint 0 data value Read/write
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-27

Debug in depth
B.10.2 Programming and reading EmbeddedICE-RT logic registers

An EmbeddedICE-RT logic register is programmed by shifting data into the
EmbeddedICE scan chain (scan chain 2). The scan chain is a 38-bit register comprising:

• a 32-bit data field

• a 5-bit address field

• a read/write bit.

This is shown in Figure B-6 on page B-29.

b01011 32 Watchpoint 0 data mask Read/write

b01100 9 Watchpoint 0 control value Read/write

b01101 8 Watchpoint 0 control mask Read/write

b10000 32 Watchpoint 1 address value Read/write

b10001 32 Watchpoint 1 address mask Read/write

b10010 32 Watchpoint 1 data value Read/write

b10011 32 Watchpoint 1 data mask Read/write

b10100 9 Watchpoint 1 control value Read/write

b10101 8 Watchpoint 1 control mask Read/write

a. An attempted write to the comms channel control register can be used to reset bit 0 of that
register.

Table B-4 ARM9E-S core EmbeddedICE-RT logic register map (continued)

Address Width Function Type
B-28 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
Figure B-6 ARM9E-S core EmbeddedICE macrocell overview

If a watchpoint is requested on a particular memory location but the data value is
irrelevant, you can program the data mask register to 0xFFFF FFFF (all bits set to 1), so
that the entire data bus value is masked.

B.10.3 Using the mask registers

For each value register there is an associated mask register in the same format. Setting
a bit to 1 in the mask register causes the corresponding bit in the value register to be
ignored in any comparison.

Address

Data

R/W

0

31

0

4

Scan chain
register

Value Mask Comparator

Rangeout

Address
decoder

IA[31:1]

DA[31:0]

TDOTDI

Update

32

Registers

Enable

5

Breakpoint/
watchpoint

A
d

d
re

s
s

D
a

ta
C

o
n

tro
l

A
d

d
re

s
s

D
a

ta
C

o
n

tro
l

A
d

d
re

s
s

D
a

ta
C

o
n

tro
l

I Control

D Control

INSTR[31:0]

DD[31:0]
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-29

Debug in depth
B.10.4 Watchpoint control registers

The format of the control registers depends on how bit 3 is programmed.

If bit 3 of the control register is programmed to a 1, the comparators examine the data
address, data, and control signals.

In this case, the format of the control register is as shown in Figure B-7.

Note
 You cannot mask bit 8 and bit 3.

Figure B-7 Watchpoint control register for data comparison

Data comparison bit functions are shown in Table B-5.

7 6 5 4 3 2 1 0

ENABLE RANGE CHAIN DBGEXT DnTRANS 1 DMAS[1] DnRWDMAS[0]

8

Table B-5 Watchpoint control register for data comparison functions

Bit
number

Name Function

0 DnRW Compares against the data not read/write signal from the core to
detect the direction of the data data bus activity. DnRW is 0 for a
read, and 1 for a write.

2:1 DMAS[1:0] Compares against the DMAS[1:0] signal from the core to detect
the size of the data data bus activity.

4 DnTRANS Compares against the data not translate signal from the core to
determine between a User mode (DnTRANS = 0) data transfer,
and a privileged mode (DnTRANS = 1) transfer.

5 DBGEXT Is an external input into the EmbeddedICE-RT logic that enables
the watchpoint to be dependent on some external condition. The
DBGEXT input for watchpoint 0 is labeled DBGEXT[0], and
the DBGEXT input for watchpoint 1 is labeled DBGEXT[1].
B-30 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
If bit 3 of the control register is programmed to 0, the comparators examine the
instruction address, instruction data, and instruction control buses. In this case bit [0] of
the mask register must be set to don’t care (programmed to 1). The format of the register
in this case is as shown in Figure B-8.

Figure B-8 Watchpoint control register for instruction comparison

6 CHAIN Selects the chain output of another watchpoint unit to implement
some debugger requests. For example, breakpoint on address YYY
only when in process XXX.

In the ARM9E-S core EmbeddedICE-RT logic, the CHAINOUT
output of watchpoint 1 is connected to the CHAIN input of
watchpoint 0. The CHAINOUT output is derived from a latch.
The address or control field comparator drives the write enable
for the latch and the input to the latch is the value of the data field
comparator. The CHAINOUT latch is cleared when the control
value register is written or when DBGnTRST is LOW.

7 RANGE Can be connected to the range output of another watchpoint
register. In the ARM9E-S core EmbeddedICE-RT logic, the
address comparator output of watchpoint 1 is connected to the
RANGE input of watchpoint 0. This enables you to couple two
watchpoints for detecting conditions that occur simultaneously,
for example, for range-checking.

8 ENABLE If a watchpoint match occurs, the internal DWPT signal is only
asserted when the ENABLE bit is set. This bit only exists in the
value register. It cannot be masked.

Table B-5 Watchpoint control register for data comparison functions (continued)

Bit
number

Name Function

7 6 5 4 3 2 1 0

ENABLE RANGE CHAIN DBGEXT InTRANS 0 0 XITBIT

8

ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-31

Debug in depth
Instruction comparison bit functions are shown in Table B-6.

B.10.5 Debug control register

The debug control register is 6 bits wide. Writing control bits occurs during a register
write access (with the read/write bit HIGH). Reading control bits occurs during a
register read access (with the read/write bit LOW).

Table B-6 Watchpoint control register for instruction comparison functions

Bit
number

Name Function

1 ITBIT Compares against the Thumb state signal from the core to
determine between a Thumb or Jazelle (ITBIT = 1) instruction
fetch or an ARM (ITBIT = 0) instruction fetch.

4 InTRANS Compares against the not translate signal from the core to
determine between a user mode (InTRANS = 0) instruction fetch,
and a privileged mode (InTRANS = 1) fetch.

5 DBGEXT Is an external input into the EmbeddedICE-RT logic that enables
the watchpoint to be dependent on some external condition. The
DBGEXT input for watchpoint 0 is labeled DBGEXT[0], and the
DBGEXT input for watchpoint 1 is labeled DBGEXT[1].

6 CHAIN Selects the chain output of another watchpoint unit to implement
some debugger requests. For example, breakpoint on address YYY
only when in process XXX.

In the ARM9E-S core EmbeddedICE-RT logic, the CHAINOUT
output of watchpoint 1 is connected to the CHAIN input of
watchpoint 0. The CHAINOUT output is derived from a latch.
The address or control field comparator drives the write enable for
the latch, and the input to the latch is the value of the data field
comparator. The CHAINOUT latch is cleared when the control
value register is written, or when nTRST is LOW.

7 RANGE Can be connected to the range output of another watchpoint
register. In the ARM9E-S core EmbeddedICE-RT logic, the
address comparator output of watchpoint 1 is connected to the
RANGE input of watchpoint 0. This enables you to couple two
watchpoints for detecting conditions that occur simultaneously, for
example, for range-checking.

8 ENABLE If a watchpoint match occurs, the internal IBREAKPTsignal is
only asserted when the ENABLE bit is set. This bit only exists in
the value register, it cannot be masked.
B-32 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
Figure B-9 shows the function of each bit in this register.

Figure B-9 Debug control register format

These functions are shown in Table B-7 and Table B-8 on page B-34.

5 4 3 2 1 0

Embedded-ICE
disable

Monitor mode
enable

SBZ INTDIS DBGRQ DBGACK

Table B-7 Debug control register bit functions

Bit
number

Name Function

5 Embedded-
ICE disable

Controls the address and data comparison logic contained within
the Embedded-ICE logic. When set to 1, the address and data
comparators are disabled. When set to 0, the address and data
comparators are enabled. You can use this bit to save power in a
system where the Embedded-ICE functionality is not required.
The reset state of this bit is 0 (comparators enabled). An extra
piece of logic initialized by debug reset ensures that the
Embedded-ICE logic is automatically disabled out of reset. This
extra logic is set by debug reset and is automatically reset on the
first access to scan chain 2.

4 Monitor
mode
enable

Controls the selection between monitor mode debug (monitor
mode enable = 1) and halt mode debug. In monitor mode,
breakpoints and watchpoints cause Prefetch Aborts and Data
Aborts to be taken (respectively). At reset, the monitor mode
enable bit is set to 1.

3 Reserved Should be zero.

2 INTDIS If bit 2 (INTDIS) is asserted, the interrupt signals to the processor
are inhibited. Table C-8 shows interrupt signal control.

1:0 DBGRQ,

DBGACK

These bits allow the values on DBGRQ and DBGACK to be
forced.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-33

Debug in depth
Both IRQ and FIQ are disabled when the processor is in debug state (DBGACK =1),
or when INTDIS is forced.

As shown in Figure B-11 on page B-37, the value stored in bit 1 of the control register
is synchronized and then ORed with the external EDBGRQ before being applied to the
processor.

In the case of DBGACK, the value of DBGACK from the core is ORed with the value
held in bit 0 to generate the external value of DBGACK seen at the periphery of the
ARM9E-S core. This enables the debug system to signal to the rest of the system that
the core is still being debugged even when system-speed accesses are being performed
(in which case the internal DBGACK signal from the core is LOW).

The structure of the debug control and status registers is shown in Figure B-11 on
page B-37.

B.10.6 Debug status register

The debug status register is ten bits wide. If it is accessed for a read (with the read/write
bit LOW), the status bits are read. The format of the debug status register is shown in
Figure B-10.

Figure B-10 Debug status register

Table B-8 Interrupt signal control

DBGACK INTDIS Interrupts

0 0 Permitted

1 x Inhibited

x 1 Inhibited

7 6 5 4 3 2 1 0

0 ITBIT

SYSCOMP

IFEN

DBGRQ

DBGACK

9 8

MOE
B-34 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
The function of each bit in this register is shown in Table B-9.

Table B-10 lists bit values and the associated meanings of the method of entry bits.

Table B-9 Debug status register bit functions

Bit
number

Name Function

1:0 DBGRQ,

DBGACK

Allow the values on the synchronized versions of EDBGRQ and
DBGACK to be read.

2 IFEN Allows the state of the core interrupt enable signal to be read.

3 SYSCOMP Allows the state of the SYSCOMP bit from the core to be read.
This enables the debugger to determine that a memory access
from the debug state has completed.

4 ITBIT Allows the status of the output ITBIT to be read. This enables the
debugger to determine what state the processor is in, and
therefore which instructions to execute.

5 Reserved Tied down to 0.

6:9 MOE This provides Method of Entry (MOE) information to the
debugger. On entry into debug state, the MOE field is updated to
indicate the cause of debug entry. The MOE field can be read
from the TAP side by accessing the EICE Debug Status Register.
Table B-10 lists bit values and the associated meanings.

Table B-10 Method of entry

MOE[3:0] Meaning

b0000 No debug entry (since last restart/dbg rst)

b0001 Breakpoint from EICE unit 0

b0010 Breakpoint from EICE unit 1

b0011 Soft breakpoint (BKPT instruction)

b0100 Vector catch breakpoint

b0101 External breakpoint

b0110 Watchpoint from EICE unit 0

b0111 Watchpoint from EICE unit 1
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-35

Debug in depth
b1000 External watchpoint

b1001 Internal debug request

b1010 External debug request

b1011 Debug re-entry from system speed access

Table B-10 Method of entry (continued)

MOE[3:0] Meaning
B-36 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
Figure B-11 Debug control and status register structure

DBGACK
(from core)

Bit 2
INTDIS

Bit 1
DBGRQ

+

+

+

Bit 2
IFEN

Bit 1
DBGRQ

Bit 0
DBGACK

Bit 0
DBGACK

+

Bit 3
SYSCOMP

Bit 4
ITBIT

EDBGRQ
(from ARM9E-S input)

DBGACK
(from core)

SYSCOMP
(from core)

ITBIT
(from core)

DBGACK
(to ARM9E-S output)

DBGRQ
(to core)

Interrupt mask enable
(to core)

Debug status
register

Debug control
register

Bit 5

Bit [9:6]
MOE

MOE
(from core)

Digital
ground
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-37

Debug in depth
B.10.7 Vector catch register

The ARM9E-S core EmbeddedICE-RT logic controls hardware to enable accesses to
the exception vectors to be trapped in an efficient manner. This is controlled by the
vector catch register, as shown in Figure B-12. The functionality is described in Vector
catching on page B-39.

Figure B-12 Vector catch register

7 6 5 4 3 2 1 0

FIQ IRQ Reserved D_Abort P_Abort SWI Undef Reset
B-38 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
B.11 Vector catching

The ARM9E-S core EmbeddedICE-RT logic contains hardware that enables efficient
trapping of fetches from the vectors during exceptions. This is controlled by the vector
catch register. If one of the bits in this register is set HIGH and the corresponding
exception occurs, the processor enters debug state as if a breakpoint has been set on an
instruction fetch from the relevant exception vector.

For example, if the processor executes a SWI instruction while bit 2 of the vector catch
register is set, the ARM9E-S core fetches an instruction from location 0x8. The vector
catch hardware detects this access and forces the internal IBREAKPT signal HIGH
into the ARM9E-S core control logic. This, in turn, forces the ARM9E-S core to enter
debug state.

The behavior of the hardware is independent of the watchpoint comparators, leaving
them free for general use. The vector catch register is sensitive only to fetches from the
vectors during exception entry. Therefore, if code branches to an address within the
vectors during normal operation, and the corresponding bit in the vector catch register
is set, the processor is not forced to enter debug state.

In monitor mode debug, vector catching is disabled on Data Aborts and Prefetch Aborts
to avoid the processor being forced into an unrecoverable state as a result of the aborts
that are generated for the monitor mode debug.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-39

Debug in depth
B.12 Coupling breakpoints and watchpoints

You can couple watchpoint units 1 and 0 together using the CHAIN and RANGE
inputs. Using CHAIN enables Watchpoint 0 to be triggered only if Watchpoint 1 has
previously matched. Using RANGE enables you to perform simple range checking by
combining the outputs of both watchpoints.

B.12.1 Breakpoint and watchpoint coupling example

Let:

Av[31:0] be the value in the address value register

Am[31:0] be the value in the address mask register

A[31:0] be the IA bus from the ARM9E-S core if control register bit 3 is clear, or
the DA bus from the ARM9E-S core if control register bit 3 is set

Dv[31:0] be the value in the data value register

Dm[31:0] be the value in the data mask register

D[31:0] be the INSTR bus from the ARM9E-S core if control register bit 3 is
clear, or the RDATA bus from the ARM9E-S core if control register bit
3 is set and the processor is doing a read, or the WDATA bus from the
ARM9E-S core if control register bit 3 is set and the processor is doing a
write

Cv[8:0] be the value in the control value register

Cm[7:0] be the value in the control mask register

C[9:0] be the combined control bus from the ARM9E-S core, other watchpoint
registers, and the DBGEXT signal.

CHAINOUT signal

The CHAINOUT signal is derived as follows:

WHEN (({Av[31:0],Cv[4,2:0]} XNOR {A[31:0],C[4,2:0]}) OR {Am[31:0],Cm[4:0]} ==
0xFFFFFFFFF)
CHAINOUT = ((({Dv[31:0],Cv[6:4]} XNOR {D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]})
== 0x7FFFFFFFF)

The CHAINOUT output of Watchpoint register 1 provides the CHAIN input to
Watchpoint 0. This CHAIN input allows for quite complicated configurations of
breakpoints and watchpoints.

Note
 There is no CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint 0.
B-40 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
Take, for example, the request by a debugger to breakpoint on the instruction at location
YYY when running process XXX in a multiprocessor system. If the current process ID
is stored in memory, you can implement the above function with a watchpoint and
breakpoint chained together. The watchpoint address points to a known memory
location containing the current process ID, the watchpoint data points to the required
process ID, and the ENABLE bit is set to off.

The address comparator output of the watchpoint is used to drive the write enable for
the CHAINOUT latch. The input to the latch is the output of the data comparator from
the same watchpoint. The output of the latch drives the CHAIN input of the breakpoint
comparator. The address YYY is stored in the breakpoint register, and when the
CHAIN input is asserted, the breakpoint address matches, and the breakpoint triggers
correctly.

B.12.2 DBGRNG signal

The DBGRNG signal is derived as follows:

DBGRNG = ((({Av[31:0],Cv[4,2:0]} XNOR {A[31:0],C[4,2:0]}) OR {Am[31:0],Cm[4:0]})
== 0xFFFFFFFFF) AND
((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR
Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF)

The RANGE input to Watchpoint unit 0 is derived as the address comparison of
Watchpoint unit 1, that is:

RANGEIN = ((Av[31:0] XNOR A[31:0]) OR Am[31:0] == 0xFFFF FFFF)

This RANGE input enables you to couple two breakpoints together to form range
breakpoints.

Selectable ranges are restricted to being powers of 2. For example, if a breakpoint is to
occur when the address is in the first 256 bytes of memory, but not in the first 32 bytes,
program the watchpoint registers as follows:

For Watchpoint 1:

1. Program Watchpoint 1 with an address value of 0x00000000 and an address mask
of 0X0000001F.

2. Clear the ENABLE bit.

3. Program all other Watchpoint 1 registers as normal for a breakpoint.

An address within the first 32 bytes causes the RANGE output to go HIGH
because the address matches, but does not trigger the breakpoint because the
ENABLE is LOW.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-41

Debug in depth
For Watchpoint 0:

1. Program Watchpoint 0 with an address value of 0x00000000 and an address mask
of 0X000000FF.

2. Set the ENABLE bit.

3. Program the RANGE bit to match a 0.

4. Program all other Watchpoint 0 registers as normal for a breakpoint.

If Watchpoint 0 matches but Watchpoint 1 does not (that is the RANGE input to
Watchpoint 0 is 0), the breakpoint is triggered.
B-42 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Debug in depth
B.13 Disabling EmbeddedICE-RT

You can disable EmbeddedICE-RT by wiring the DBGEN input LOW.

When DBGEN is LOW:

• DBGIEBKPT, DBGDEWPT, and DBGRQ are forced LOW to the core.
(DBGRQ is the internal DBGRQ, which is a combination of the external input
EDBGRQ and the debug control register bit 1 DBGRQ.)

• DBGACK is forced LOW from the ARM9E-S core.

• Interrupts pass through to the processor uninhibited.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. B-43

Debug in depth
B.14 EmbeddedICE-RT timing

EmbeddedICE-RT samples the DBGEXT[1] and DBGEXT[0] inputs on the rising
edge of CLK.

See Chapter 9 AC Parameters for details of the required setup and hold times for these
signals.
B-44 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Glossary

This glossary describes some of the terms used in this manual. Where terms can have
several meanings, the meaning presented here is intended.

Abort A mechanism that indicates to a core that it should halt execution of an attempted illegal
memory access. An abort can be caused by the external or internal memory system as a
result of attempting to access invalid instruction or data memory. An abort is classified
as either a prefetch abort, a data abort, or an external abort. See also Data abort,
External abort and Prefetch abort.

Abort model An abort model is the defined behavior of an ARM processor in response to a Data
Abort exception. Different abort models behave differently with regard to load and store
instructions that specify base register writeback.

ALU See Arithmetic Logic Unit.

Application Specific
Integrated Circuit

An integrated circuit that has been designed to perform a specific application function.
It can be custom-built or mass-produced.

Arithmetic Logic
Unit

The part of a processor core that performs arithmetic and logic operations.

ARM state A processor that is executing ARM (32-bit) word-aligned instructions is operating in
ARM state.

ASIC See Application Specific Integrated Circuit.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. Glossary-1

Glossary
Banked registers Those physical registers whose use is defined by the current processor mode. The
banked registers are R8 to R14.

Base register A register specified by a load or store instruction that is used to hold the base value for
the instruction’s address calculation.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are
stored at increasing addresses in memory. See also Little-endian and Endianness.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which
program execution is to be halted. Breakpoints are inserted by the programmer to enable
inspection of register contents, memory locations, variable values at fixed points in the
program execution to test that the program is operating correctly. Breakpoints are
removed after the program is successfully tested. See also Watchpoint.

Byte An 8-bit data item.

Central Processing
Unit

The part of a processor that contains the ALU, the registers, and the instruction decode
logic and control circuitry. Also commonly known as the processor core.

Clock gating Gating a clock signal for a macrocell with a control signal (such as PWRDOWN) and
using the modified clock that results to control the operating state of the macrocell.

Condition field A 4-bit field in an instruction that is used to specify a condition under which the
instruction can execute.

Coprocessor A processor that supplements the main CPU. It carries out additional functions that the
main CPU cannot perform. Usually used for floating-point math calculations, signal
processing, or memory management.

CPU See Central Processing Unit.

CPI See Cycles Per Instruction.

Cycles Per
Instruction

The number of clock cycles it takes to perform an instruction.

Data Abort An indication from a memory system to a core that it should halt execution of an
attempted illegal memory access. A data abort is attempting to access invalid data
memory. See also Abort, and Prefetch abort.

Debugger A debugging system that includes a program, used to detect, locate, and correct software
faults, together with custom hardware that supports software debugging.

Double word A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise
stated.

EmbeddedICE The additional JTAG-based hardware provided by debuggable ARM processors to aid
debugging.
Glossary-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Glossary
Endianness Byte ordering. The scheme that determines the order in which successive bytes of a data
word are stored in memory. See also Little-endian and Big-endian.

Exception vector One of a number of fixed addresses in low memory, or in high memory if high vectors
are configured, that contains the first instruction of the corresponding interrupt service
routine.

Halfword A 16-bit data item.

Joint Test Action
Group

The name of the organization that developed standard IEEE 1149.1. This standard
defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices. It is commonly known by the initials JTAG.

JTAG See Joint Test Action Group.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored
at increasing addresses in memory. See also Big-endian and Endianness.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system
will comprise several macrocells (such as an ARM9E-S, an ETM9, and a memory
block) plus application-specific logic.

Prefetch abort An indication from a memory system to a core that it should halt execution of an
attempted illegal memory access. A prefetch abort can be caused by the external or
internal memory system as a result of attempting to access invalid instruction memory.
See also Data abort, External abort and Abort

Processor A contraction of microprocessor. A processor includes the CPU or core, plus additional
components such as memory, and interfaces. These are combined as a single macrocell,
that can be fabricated on an integrated circuit.

Region A partition of instruction or data memory space.

Register A temporary storage location used to hold binary data until it is ready to be used.

SBO See Should be one.

SBZ See Should be zero.

SCREG The currently selected scan chain number in an ARM TAP controller.

Should be one Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 will produce
UNPREDICTABLE results.

Should be zero Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 will produce
UNPREDICTABLE results.

TAP See Test access port.
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. Glossary-3

Glossary
Test Access Port The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
are TDI, TDO, TMS, and TCK. The optional terminal is TRST.

Thumb state A processor that is executing Thumb (16-bit) half-word aligned instructions is operating
in Thumb state.

UNDEFINED An instruction that generates an undefined instruction exception.

UNPREDICTABLE For reads, the data returned when reading from this location is unpredictable. It can have
any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. UNPREDICTABLE instructions must
not halt or hang the processor, or any part of the system.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when
the data contained by a particular memory address is changed. Watchpoints are inserted
by the programmer to enable inspection of register contents, memory locations, and
variable values when memory is written to test that the program is operating correctly.
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

Word A 32-bit data item.
Glossary-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Index
A
Abort 2-22

Data 2-22, B-26
handler 2-23
mode 2-8
Prefetch 2-22, B-26
vector B-24

Aborted watchpoint B-25
Access

system speed B-23
watchpointed B-24, B-26

Address bits, significant 3-7
Addressing mode 2 1-16
Alignment 2-7
ARM

exception
entering 2-20
leaving 2-20

instruction set 1-5
instruction set summary 1-12
state 1-5, 2-3

register set 2-9

to Thumb state 2-3
ARM9E-S

architecture 1-5
block diagram 1-7
core diagram 1-7
functional diagram 1-7
instruction set 1-11

B
Back to back memory transfers 3-32
Banked registers 2-9, B-19
Big-endian 2-4
Big-endian format 2-4
BKPT 2-24
Block diagram, ARM9E-S 1-7
Boundary-scan

chain cells B-5
interface B-5

Branch
and exchange 7-10
with link 7-8

Breakpoint instruction 2-24
Breakpoints 8-7, 8-9, B-23

coupling with watchpoints B-40
instruction boundary 8-10
Prefetch Abort 8-10
timing 8-9

Burst types 3-10
Bus cycles, CLKEN 3-35
Busy-wait 5-6, 5-15

abandoned 5-15
interrupted 5-15

Bypass register B-9, B-10
Byte 2-7

access 3-22

C
C flag 2-16
Cancelled memory accesses 3-31
Cancelled memory cycles 3-11
CHAIN B-41
CLK
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. Index-1

Index
signal 3-35, 4-5, 8-15, A-2, B-17
CLKEN

signal 3-35, 4-5
Clock

domains 8-15
maximum skew 9-9
system 8-15
test 8-15

Code density 1-5
Comms channel

using 8-19
Compression, instruction 1-5
Condition code flags 2-16
Condition fields 1-19
Configuration input timing 9-5
Control bits 2-16
Conventions

signal naming xviii
timing diagram xviii
typographical xvii

Coprocessor
CDP 5-12
clocking 5-5
connecting 5-17
handshake encoding 5-7
handshake signals 5-6
interface 5-2
interface signals A-7
interlocked MCR 5-10
interlocked MCRR 5-11
late-canceled CDP 5-12
LDC/STC 5-4
LDC/STC cycle timing 5-4
MCR 5-16
MCR or MRC transfer timing 5-8
MCRR or MRRC transfer timing

5-9
none connected 5-19
pipeline 5-2
register transfer cycle 3-31
register transfer instructions 8-17
undefined instructions 5-19

Coprocessor instructions
busy-wait 5-6
during busy-wait 5-15
during interrupts 5-15
privileged instructions 5-14
privileged modes 5-14

Core

reset 6-3, 6-4
Core diagram, ARM9E-S 1-7
CORECLKENOUT A-2
Coupling breakpoints and watchpoints

B-40
CPSR 2-9, 2-12, 2-15

mode B-24
Current program status register 2-9,

2-12, 2-15
Cycle

internal 3-9, 3-11
nonsequential 3-9
sequential 3-9

D
Data

Abort 2-22, B-26
dependencies 1-4
interface 3-15
operations 7-12
types 2-7

Data interface
cycle types 3-25
internal cycles 3-31
nonsequential cycles 3-26
sequential cycles 3-28

Data interface signals 3-15
Data memory interface signals A-4
DBGnTRST 6-2
Debug

actions in debug state 8-14
comms channel control register

8-17
comms channel registers 8-17
comms channel reset 8-21
comms control register 8-17
comms data read register 8-17
comms data write register 8-17
control and status register structure

B-37
control register 8-6, B-32
entry from ARM state B-18
entry from Thumb state B-18
extensions 8-2
hardware extensions 8-4
interface 8-2
interface signals 8-5

monitor mode 8-2, 8-22
Multi-ICE 8-15
receiving from the debugger 8-20
request 8-13, B-23, B-24
sending to the debugger 8-20
signals A-8
state 8-5
state, processor restart on exit B-9
status register 8-6, 8-19, B-34
support 8-6

Decode 1-2
Determining

core state 8-16
system state 8-16

Device identification code B-8, B-10
Device reset 6-2
Disabling EmbeddedICE-RT 8-8

E
EmbeddedICE-RT B-27

debug status register 8-16
disabling 8-8, B-43
hardware B-27
logic 8-4, 8-6
logic registers B-28
operation 8-6
overview 8-6
programming B-2
register map B-27
registers, accessing B-3
reset 6-4
timing B-44

Endian effects 3-7, 3-34
Endianness 2-4
Exception

entry and exit 2-19
entry, ARM state 2-20
entry, Thumb state 2-20
priority 2-25
vectors 2-24

Exceptions 2-19
FIQ 2-21
IRQ 2-21

Execute 1-2
Index-2 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Index
F
F bit, FIQ disable 2-16
Fetch 1-2
Fields 1-19
FIQ

disable, F bit 2-16
exception 2-21
mode 2-8

Flags 2-16
Forwarding 1-4
Functional diagram, ARM9E-S 1-7

H
Halfword 2-7
Halfword access 3-22
High registers 2-14

I
I bit, IRQ disable 2-16
IA A-3
ID register B-5, B-8, B-10
IDCODE instruction B-5, B-11
Identification register See ID register
InMREQ

signals 3-4, 3-8, 3-9, 3-11
Instruction

compression 1-5
coprocessor register transfer 8-17
fetch, nonsequential 3-9
fetch, sequential 3-10
interface 3-3
interface cycle types 3-8
length 2-6
pipeline 1-2
pipeline operation 1-3
register B-9, B-10
SCAN_N B-8, B-12
system speed B-25

Instruction cycle counts 7-3
Instruction interface signals 3-3
Instruction memory interface signals

A-3
Instruction set

ARM 1-5, 1-12

summary 1-11
Thumb 1-5

Interface
boundary-scan B-5
debug 8-2

Interlocking 1-4
Internal cycle 3-9, 3-11
Interrupt

generating 4-3
hardware 4-3
re-enabling after an interrupt

exception 4-3
registers 4-5
stopping CLK 4-5
synchronization 4-3

Interrupts 4-2
disable flags 2-20
using CLK and CLKEN 4-5

Interworking 2-3
INTEST

instruction B-12
mode B-16

IRQ
disable, I bit 2-16
exception 2-21
mode 2-8

J
JTAG instructions

IDCODE B-5, B-11
INTEST B-12
RESTART B-9
SCAN_N B-12, B-16
SCAN_N TAP B-14
TAP B-11

JTAG interface 8-4, 8-5

L
Link register 2-9, 2-12
Little-endian 2-4
Little-endian format 2-4
Low registers 2-14
LR 2-12

M
Mask registers B-29
Maximum interrupt latency 4-6
MCR 5-16
Memory 1-2

access 1-4
cycle 3-8
formats 2-4
interface 3-2
requests, withdrawal of 3-36

Minimum interrupt latency 4-7
Miscellaneous signals A-6
Mode

abort 2-8, B-24
bits 2-17
FIQ 2-8
identifier 2-10
IRQ 2-8
privileged 2-8
PSR bit values 2-17
supervisor 2-8
System 2-8
Undefined 2-8
User 2-8

Monitor mode debug 8-22
Multi-ICE 8-15

N
N flag 2-16
Nonsequential cycle 3-9
nRESET 6-2

O
Operand 2 1-18
Operating state

ARM 2-3
T bit 2-17

Operating states 2-3
Oprnd2 1-18

P
PC 2-12
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. Index-3

Index
Pipeline
ARM 5-2
coprocessor 5-2
Pipeline follower 5-2

Prefetch Abort 2-22, B-26
Priorities and exceptions B-26
Priority of exceptions 2-25
Privileged modes 2-8
Processor state, determining B-18
Product revision status xvi
Program counter 2-9, 2-12
Program status registers 2-15
PSR

control bits 2-16
mode bit values 2-17
reserved bits 2-18

Q
Q flag 2-16

R
Register

banked 2-9
current program status 2-9
general-purpose 2-9
high 2-14
link 2-9
program status 2-15
saved program status 2-9
status 2-9

Register organization in ARM state
2-11

Register organization in Thumb state
2-13

Register, debug
bypass B-10
comms control 8-17
comms data read 8-17
comms data write 8-17
control 8-6
EmbeddedICE-RT debug status

8-16
EmbeddedICE-RT, accessing B-3
ID B-5, B-10
instruction B-9, B-10

scan path select B-8, B-10
status 8-6
test data B-10

Reserved bits, PSR 2-18
Reset 2-21, 6-2

core 6-4
full system 6-3

behavior 6-5
EmbeddedICE-RT 6-4
modes 6-3

RESTART instruction B-9
Restart on exit from debug B-9
Revision status xvi

S
Saved program status register 2-9
Scan

cells B-13
path B-2
path select register B-8, B-10

Scan chains
scan chain 1 B-2, B-10, B-14
scan chain 2 B-2, B-10, B-16

SCAN_N B-8, B-12, B-16
Sequential cycle 3-9
Serial interface, JTAG 8-4, 8-5
signal

Signals A-3
CORECLKENOUT A-2

Signal naming conventions xviii
Signal types

address class 3-4, 3-17
data timed 3-6, 3-20
debug interface 8-5

Signals
CHAIN B-41
CLK 3-35, 4-5, 8-15, A-2, B-17
CLKEN 3-35, 4-5
coprocessor interface A-7
data interface 3-15
data memory interface A-4
DBGnTRST 6-2
debug A-8
InMREQ 3-4, 3-8, 3-9, 3-11
instruction interface 3-3
instruction memory interface A-3

miscellaneous A-6
nRESET 6-2

Significant address bits 3-7
Single-step core operation B-8
Software interrupt 2-23
SP 2-12
SPSR 2-9, 2-12, 2-15, B-24
Stack pointer 2-12
State

ARM 1-5
debug 8-5
Thumb 1-5

State registers relationship 2-13
States

core B-18
system B-18
TAP B-14
TAP controller 8-2

Status registers 2-9
Sticky overflow flag 2-16
Stored program status register 2-12,

2-15
Supervisor mode 2-8
SWI 2-23
System mode 2-8
System speed instruction B-25
System state, determining 8-16

T
T bit 2-17
TAP 8-2

controller 8-4, B-2, B-3, B-14
controller, states 8-2
instruction B-11
state B-14

Test Access Port 8-2
Test clock 8-15
Test data registers B-10
Thumb

instruction set 1-5
state 1-5, 2-12

Thumb state
register set 2-12

Timing
configuration input 9-5
exception input 9-5

Timing diagram conventions xviii
Index-4 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

Index
Timing parameter definitions 9-9
Typographical conventions xvii

U
Undefined instruction 2-23
Undefined mode 2-8
Unused instruction codes B-9
User mode 2-8

V
V flag 2-16
Vector catch register B-38
Vector catching B-39
Vector, exception 2-24

W
Watchpoint control registers B-30
Watchpointed

access B-24, B-26
memory access B-24

Watchpoints 8-6, 8-7, B-23
aborted B-25
coupling with breakpoints B-40
entry with branch 8-13
timing 8-11
with exception B-23

Watchpoints and exceptions 8-13
Word 2-7
Writeback 1-2

Z
Z flag 2-16
ARM DDI 0240B Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. Index-5

Index
Index-6 Copyright © 2001, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0240B

	ARM9E-S Core Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this manual
	Product revision status
	Intended audience
	Using this manual
	Conventions
	Further reading

	Feedback
	Feedback on the product
	Feedback on this manual

	Introduction
	1.1 About the ARM9E-S core
	1.1.1 The instruction pipelines
	1.1.2 Memory access
	1.1.3 Forwarding, interlocking, and data dependencies

	1.2 ARM9E-S architecture
	1.2.1 Instruction compression
	1.2.2 The Thumb instruction set

	1.3 ARM9E-S block, core, and interface diagrams
	1.4 ARM9E-S instruction set summary
	1.4.1 Extended ARM instruction set summary
	1.4.2 Thumb instruction set summary

	1.5 Silicon revision information
	1.5.1 Changes between ARM9E-S Rev 1 and Rev 2
	1.5.2 Changes between ARM9E-S r2p0 and r2p1

	Programmer’s Model
	2.1 About the programmer’s model
	2.2 Processor operating states
	2.2.1 Switching state
	2.2.2 Interworking ARM and Thumb state

	2.3 Memory formats
	2.3.1 Big-endian format
	2.3.2 Little-endian format

	2.4 Instruction length
	2.5 Data types
	2.6 Operating modes
	2.7 Registers
	2.7.1 The ARM state register set
	2.7.2 The Thumb state register set
	2.7.3 ARM state and Thumb state registers relationship
	2.7.4 Accessing high registers in Thumb state

	2.8 The program status registers
	2.8.1 The condition code flags
	2.8.2 The Q flag
	2.8.3 The control bits
	2.8.4 Reserved bits

	2.9 Exceptions
	2.9.1 Exception entry and exit summary
	2.9.2 Entering an ARM exception
	2.9.3 Leaving an ARM exception
	2.9.4 Reset
	2.9.5 Fast interrupt request
	2.9.6 Interrupt request
	2.9.7 Aborts
	2.9.8 Software interrupt instruction
	2.9.9 Undefined instruction
	2.9.10 Breakpoint instruction (BKPT)
	2.9.11 Exception vectors
	2.9.12 Exception priorities

	Memory Interface
	3.1 About the memory interface
	3.2 Instruction interface
	3.2.1 Instruction interface signals

	3.3 Instruction interface addressing signals
	3.3.1 IA[31:1]
	3.3.2 ITBIT
	3.3.3 InTRANS
	3.3.4 InM[4:0]

	3.4 Instruction interface data timed signals
	3.4.1 INSTR[31:0]
	3.4.2 IABORT

	3.5 Endian effects for instruction fetches
	3.6 Instruction interface cycle types
	3.6.1 Instruction interface, nonsequential cycles
	3.6.2 Instruction interface, sequential cycles
	3.6.3 Instruction interface, internal cycles
	3.6.4 Canceled memory cycles

	3.7 Data interface
	3.7.1 Data interface signals

	3.8 Data interface addressing signals
	3.8.1 DA[31:0]
	3.8.2 DLOCK
	3.8.3 DMAS[1:0]
	3.8.4 DnM[4:0]
	3.8.5 DnRW
	3.8.6 DnSPEC
	3.8.7 DnTRANS

	3.9 Data interface data timed signals
	3.9.1 DABORT
	3.9.2 RDATA[31:0]
	3.9.3 WDATA[31:0]
	3.9.4 Byte and halfword accesses

	3.10 Data interface cycle types
	3.10.1 Data interface, nonsequential cycles
	3.10.2 Data interface, sequential cycles
	3.10.3 DBURST[3:0]
	3.10.4 Data interface, internal cycles
	3.10.5 Data interface, coprocessor register transfer cycles
	3.10.6 Canceled memory accesses

	3.11 Endian effects for data transfers
	3.11.1 Writes
	3.11.2 Reads

	3.12 Use of CLKEN to control bus cycles
	3.12.1 Withdrawal of memory requests in waited cycles

	Interrupts
	4.1 About interrupts
	4.2 Hardware interface
	4.2.1 Generating an interrupt
	4.2.2 Synchronization
	4.2.3 Re-enabling interrupts after an interrupt exception
	4.2.4 Interrupt registers

	4.3 Maximum interrupt latency
	4.4 Minimum interrupt latency

	Coprocessor Interface
	5.1 About the coprocessor interface
	5.1.1 Coprocessor pipeline operates in step with the ARM9E-S core
	5.1.2 Coprocessor pipeline one cycle behind the ARM9E-S core

	5.2 LDC/STC
	5.2.1 Coprocessor handshake encoding

	5.3 MCR/MRC
	5.4 MCRR/MRRC
	5.5 Interlocked MCR
	5.6 Interlocked MCRR
	5.7 CDP
	5.8 Privileged instructions
	5.9 Busy-waiting and interrupts
	5.10 Coprocessor 15 MCRs
	5.11 Connecting coprocessors
	5.11.1 Connecting a single coprocessor
	5.11.2 Connecting multiple coprocessors
	5.11.3 No external coprocessor
	5.11.4 Undefined instructions

	Device Reset
	6.1 About device reset
	6.2 Reset modes
	6.2.1 Full system reset
	6.2.2 Core reset
	6.2.3 EmbeddedICE-RT reset
	6.2.4 Normal operation

	6.3 ARM9E-S core behavior on exit from reset

	Instruction Cycle Times
	7.1 Instruction cycle count summary
	7.2 Introduction to detailed instruction cycle timings
	7.3 Branch and ARM branch with link
	7.4 Thumb branch with link
	7.5 Branch and exchange
	7.6 Thumb Branch, Link, and Exchange <immediate>
	7.7 Data operations
	7.8 MRS operations
	7.9 MSR operations
	7.10 Multiply and multiply accumulate
	7.10.1 Interlocks

	7.11 QADD, QDADD, QSUB, and QDSUB
	7.11.1 Interlocks

	7.12 Load register
	7.12.1 Interlocks

	7.13 Store register
	7.14 Load multiple registers
	7.14.1 Interlocks

	7.15 Store multiple registers
	7.16 Load double register
	7.17 Store double register
	7.18 Data swap
	7.18.1 Interlocks

	7.19 PLD
	7.20 Software interrupt, undefined instruction, and exception entry
	7.21 Coprocessor data processing operation
	7.22 Load coprocessor register, from memory
	7.23 Store coprocessor register, to memory
	7.24 Coprocessor register transfer, to ARM
	7.25 Coprocessor register transfer, from ARM register
	7.26 Double coprocessor register transfer, to ARM register
	7.27 Double coprocessor register transfer, from ARM register
	7.28 Coprocessor absent
	7.29 Unexecuted instructions

	Debug Interface and EmbeddedICE-RT
	8.1 About the debug interface
	8.1.1 Halt mode
	8.1.2 Monitor mode

	8.2 Debug systems
	8.2.1 The debug host
	8.2.2 The protocol converter
	8.2.3 The ARM9E-S core

	8.3 About EmbeddedICE-RT
	8.4 Disabling EmbeddedICE-RT
	8.5 Debug interface signals
	8.5.1 Entry into debug state on breakpoint
	8.5.2 Breakpoints and exceptions
	8.5.3 Watchpoints
	8.5.4 Watchpoints and exceptions
	8.5.5 Debug request
	8.5.6 Actions of the ARM9E-S core in debug state

	8.6 ARM9E-S core clock domains
	8.6.1 Clocks and synchronization

	8.7 Determining the core and system state
	8.8 The debug communications channel
	8.8.1 Debug comms channel registers
	8.8.2 Debug comms channel control register
	8.8.3 Comms channel monitor mode debug status register
	8.8.4 Communications using the comms channel
	8.8.5 Comms channel reset

	8.9 Monitor mode debug
	8.10 Using watchpoints and breakpoints
	8.10.1 Watchpoints
	8.10.2 Breakpoints
	8.10.3 Monitor mode

	AC Parameters
	9.1 Timing diagrams
	9.2 AC timing parameter definitions

	Signal Descriptions
	A.1 Clock interface signals
	A.2 Instruction memory interface signals
	A.3 Data memory interface signals
	A.4 Miscellaneous signals
	A.5 Coprocessor interface signals
	A.6 Debug signals

	Debug in depth
	B.1 Scan chains and JTAG interface
	B.1.1 Debug scan chains
	B.1.2 TAP state machine

	B.2 Resetting the TAP controller
	B.3 Instruction register
	B.4 Public instructions
	B.4.1 EXTEST (b0000)
	B.4.2 SAMPLE/PRELOAD (b0011)
	B.4.3 SCAN_N (b0010)
	B.4.4 INTEST (b1100)
	B.4.5 IDCODE (b1110)
	B.4.6 BYPASS (b1111)
	B.4.7 RESTART (b0100)

	B.5 Test data registers
	B.5.1 Bypass register
	B.5.2 ARM9E-S core device identification (ID) code register
	B.5.3 Instruction register
	B.5.4 Scan path select register
	B.5.5 Scan chains 1 and 2

	B.6 ARM9E-S core clock domains
	B.7 Determining the core and system state
	B.7.1 Determining the core state
	B.7.2 Determining the system state
	B.7.3 Exit from debug state

	B.8 Behavior of the program counter during debug
	B.8.1 ARM and Thumb state breakpoints
	B.8.2 ARM and Thumb state watchpoints
	B.8.3 Watchpoint with another exception
	B.8.4 Watchpoint and breakpoint
	B.8.5 Debug request
	B.8.6 System speed access
	B.8.7 Summary of return address calculations

	B.9 Priorities and exceptions
	B.9.1 Breakpoint with Prefetch Abort
	B.9.2 Interrupts
	B.9.3 Data Aborts

	B.10 EmbeddedICE-RT logic
	B.10.1 Register map
	B.10.2 Programming and reading EmbeddedICE-RT logic registers
	B.10.3 Using the mask registers
	B.10.4 Watchpoint control registers
	B.10.5 Debug control register
	B.10.6 Debug status register
	B.10.7 Vector catch register

	B.11 Vector catching
	B.12 Coupling breakpoints and watchpoints
	B.12.1 Breakpoint and watchpoint coupling example
	B.12.2 DBGRNG signal

	B.13 Disabling EmbeddedICE-RT
	B.14 EmbeddedICE-RT timing

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

