/* cache.c - routines to maintain an in-core cache of entries */ /* $OpenLDAP: pkg/ldap/servers/slapd/back-monitor/cache.c,v 1.19.2.6 2007/01/02 21:44:04 kurt Exp $ */ /* This work is part of OpenLDAP Software . * * Copyright 2001-2007 The OpenLDAP Foundation. * Portions Copyright 2001-2003 Pierangelo Masarati. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted only as authorized by the OpenLDAP * Public License. * * A copy of this license is available in file LICENSE in the * top-level directory of the distribution or, alternatively, at * . */ /* ACKNOWLEDGEMENTS: * This work was initially developed by Pierangelo Masarati for inclusion * in OpenLDAP Software. */ #include "portable.h" #include #include "ac/string.h" #include "slap.h" #include "back-monitor.h" /* * The cache maps DNs to Entries. * Each entry, on turn, holds the list of its children in the e_private field. * This is used by search operation to perform onelevel and subtree candidate * selection. */ typedef struct monitor_cache_t { struct berval mc_ndn; Entry *mc_e; } monitor_cache_t; /* * compares entries based on the dn */ int monitor_cache_cmp( const void *c1, const void *c2 ) { monitor_cache_t *cc1 = ( monitor_cache_t * )c1; monitor_cache_t *cc2 = ( monitor_cache_t * )c2; /* * case sensitive, because the dn MUST be normalized */ return ber_bvcmp( &cc1->mc_ndn, &cc2->mc_ndn ); } /* * checks for duplicate entries */ int monitor_cache_dup( void *c1, void *c2 ) { monitor_cache_t *cc1 = ( monitor_cache_t * )c1; monitor_cache_t *cc2 = ( monitor_cache_t * )c2; /* * case sensitive, because the dn MUST be normalized */ return ber_bvcmp( &cc1->mc_ndn, &cc2->mc_ndn ) == 0 ? -1 : 0; } /* * adds an entry to the cache and inits the mutex */ int monitor_cache_add( monitor_info_t *mi, Entry *e ) { monitor_cache_t *mc; monitor_entry_t *mp; int rc; assert( mi != NULL ); assert( e != NULL ); mp = ( monitor_entry_t *)e->e_private; mc = ( monitor_cache_t * )ch_malloc( sizeof( monitor_cache_t ) ); mc->mc_ndn = e->e_nname; mc->mc_e = e; ldap_pvt_thread_mutex_lock( &mi->mi_cache_mutex ); rc = avl_insert( &mi->mi_cache, ( caddr_t )mc, monitor_cache_cmp, monitor_cache_dup ); ldap_pvt_thread_mutex_unlock( &mi->mi_cache_mutex ); return rc; } /* * locks the entry (no r/w) */ int monitor_cache_lock( Entry *e ) { monitor_entry_t *mp; assert( e != NULL ); assert( e->e_private != NULL ); mp = ( monitor_entry_t * )e->e_private; ldap_pvt_thread_mutex_lock( &mp->mp_mutex ); return( 0 ); } /* * gets an entry from the cache based on the normalized dn * with mutex locked */ int monitor_cache_get( monitor_info_t *mi, struct berval *ndn, Entry **ep ) { monitor_cache_t tmp_mc, *mc; assert( mi != NULL ); assert( ndn != NULL ); assert( ep != NULL ); *ep = NULL; tmp_mc.mc_ndn = *ndn; ldap_pvt_thread_mutex_lock( &mi->mi_cache_mutex ); mc = ( monitor_cache_t * )avl_find( mi->mi_cache, ( caddr_t )&tmp_mc, monitor_cache_cmp ); if ( mc != NULL ) { /* entry is returned with mutex locked */ monitor_cache_lock( mc->mc_e ); *ep = mc->mc_e; } ldap_pvt_thread_mutex_unlock( &mi->mi_cache_mutex ); return ( *ep == NULL ? -1 : 0 ); } /* * If the entry exists in cache, it is returned in locked status; * otherwise, if the parent exists, if it may generate volatile * descendants an attempt to generate the required entry is * performed and, if successful, the entry is returned */ int monitor_cache_dn2entry( Operation *op, SlapReply *rs, struct berval *ndn, Entry **ep, Entry **matched ) { monitor_info_t *mi = (monitor_info_t *)op->o_bd->be_private; int rc; struct berval p_ndn = BER_BVNULL; Entry *e_parent; monitor_entry_t *mp; assert( mi != NULL ); assert( ndn != NULL ); assert( ep != NULL ); assert( matched != NULL ); *matched = NULL; if ( !dnIsSuffix( ndn, &op->o_bd->be_nsuffix[ 0 ] ) ) { return( -1 ); } rc = monitor_cache_get( mi, ndn, ep ); if ( !rc && *ep != NULL ) { return( 0 ); } /* try with parent/ancestors */ if ( BER_BVISNULL( ndn ) ) { BER_BVSTR( &p_ndn, "" ); } else { dnParent( ndn, &p_ndn ); } rc = monitor_cache_dn2entry( op, rs, &p_ndn, &e_parent, matched ); if ( rc || e_parent == NULL ) { return( -1 ); } mp = ( monitor_entry_t * )e_parent->e_private; rc = -1; if ( mp->mp_flags & MONITOR_F_VOLATILE_CH ) { /* parent entry generates volatile children */ rc = monitor_entry_create( op, rs, ndn, e_parent, ep ); } if ( !rc ) { monitor_cache_lock( *ep ); monitor_cache_release( mi, e_parent ); } else { *matched = e_parent; } return( rc ); } /* * releases the lock of the entry; if it is marked as volatile, it is * destroyed. */ int monitor_cache_release( monitor_info_t *mi, Entry *e ) { monitor_entry_t *mp; assert( mi != NULL ); assert( e != NULL ); assert( e->e_private != NULL ); mp = ( monitor_entry_t * )e->e_private; if ( mp->mp_flags & MONITOR_F_VOLATILE ) { monitor_cache_t *mc, tmp_mc; /* volatile entries do not return to cache */ ldap_pvt_thread_mutex_lock( &mi->mi_cache_mutex ); tmp_mc.mc_ndn = e->e_nname; mc = avl_delete( &mi->mi_cache, ( caddr_t )&tmp_mc, monitor_cache_cmp ); ldap_pvt_thread_mutex_unlock( &mi->mi_cache_mutex ); if ( mc != NULL ) { ch_free( mc ); } ldap_pvt_thread_mutex_unlock( &mp->mp_mutex ); ldap_pvt_thread_mutex_destroy( &mp->mp_mutex ); ch_free( mp ); e->e_private = NULL; entry_free( e ); return( 0 ); } ldap_pvt_thread_mutex_unlock( &mp->mp_mutex ); return( 0 ); } static void monitor_entry_destroy( void *v_mc ) { monitor_cache_t *mc = (monitor_cache_t *)v_mc; if ( mc->mc_e != NULL ) { monitor_entry_t *mp; assert( mc->mc_e->e_private != NULL ); mp = ( monitor_entry_t * )mc->mc_e->e_private; if ( mp->mp_cb ) { if ( mp->mp_cb->mc_free ) { mp->mp_cb->mc_free( mc->mc_e, mp->mp_cb->mc_private ); } ch_free( mp->mp_cb ); } ldap_pvt_thread_mutex_destroy( &mp->mp_mutex ); ch_free( mp ); mc->mc_e->e_private = NULL; entry_free( mc->mc_e ); } ch_free( mc ); } int monitor_cache_destroy( monitor_info_t *mi ) { if ( mi->mi_cache ) { avl_free( mi->mi_cache, monitor_entry_destroy ); } return 0; }