% % \iffalse %% Copyright 1996 1997 David Carlisle Frank Mittelbach %% %% Development of this package was commissioned by Y&Y Inc. %% http://www.yandy.com % % %<*dtx> \ProvidesFile{bm.dtx} % %\NeedsTeXFormat{LaTeX2e} %\ProvidesPackage{bm} %\ProvidesFile{bm.drv} % \fi % \ProvidesFile{bm.dtx} [1997/11/22 v1.0e Bold Symbol Support (DPC/FMi)] % % \iffalse %<*driver> \documentclass{ltxdoc} \usepackage{bm} \DocInput{bm.dtx} \end{document} % % \fi % % \CheckSum{901} % % \GetFileInfo{bm.dtx} % \begin{document} % \title{The \textsf{bm} package\thanks{This file % has version number \fileversion, last % revised \filedate.}\ \thanks{Development of this package % was commissioned by Y\&Y.}} % % \date{\filedate} % \author{David Carlisle with support by Frank Mittelbach} % \maketitle % % \section{Introduction} % % This package defines commands to access bold math % symbols. The basic command is |\bm| which may be used to make the % math expression in its argument be typeset using bold fonts. % % The syntax of |\bm| is:\\ % |\bm|\marg{math expression}\\ % So |$\alpha \not= \bm{\alpha}$| produces $\alpha \not= \bm{\alpha}$. % % |\bm| goes to some trouble to preserve the spacing, so that for % instance |\bm<| is a bold $\bm<$ but with the correct |\mathrel| % spacing that \TeX\ gives to $<$. The calculations that \TeX\ needs to % do for |\bm| can be quite involved and so a definition form is % provided. % % |\DeclareBoldMathCommand|%^^A % \oarg{math version}\marg{cmd}\marg{math expression} % % Defines |\cmd| to be the bold form of the math expression. % The \meta{math version} defaults to `bold' (i.e., |\boldmath|). % % For relatively simple expressions, the resulting definitions are very % efficient, for instance after:\\ % |\DeclareBoldMathCommand\balpha{\alpha}|\\ % |\balpha| is a single `mathchardef' token producing a bold alpha, % and so is just as fast to execute as |\alpha|. % % The above command is mainly intended for use in packages. % For occasional use in \LaTeX\ documents, and for compatibility % with the plain \TeX\ support for the mathtime fonts, a `user-level' % version, |\bmdefine| is provided that is equivalent to:\\ % |\DeclareBoldMathCommand[bold]|. % % If there is a `heavy' math version defined (usually accessed by a % user-command |\heavymath|) then a similar command |\hm| % is defined which access these `ultra bold' fonts. Currently this is % probably only useful with the `mathtime plus' font collection. % Definitions of commands that use these fonts may be made by % specifying the optional argument `heavy' to |\DeclareBoldMathCommand|. % Again an abbreviation, |\hmdefine|, is provided, equivalent to:\\ % |\DeclareBoldMathCommand[heavy]|. % % The command names (but not the implementation) are taken from Michael % Spivak's macros to support the mathtime fonts for plain \TeX. In those % original macros, the syntax for |\bmdefine| was % |\bmdefine\balpha{\bm\alpha}| (with a nested |\bm|). This syntax also % works with this package. % % \section{Font allocation} % In order to access bold fonts in the simplest and quickest possible % manner, the package normally allocates symbol fonts for bold % (and possibly heavy) fonts into the `normal' math version. % By default it allocates at most four fonts for |\bm| and at most % three fonts for |\hm|. This means that if the mathtime plus font set % is being used, seven additional symbol fonts will be used, in addition % to the basic four that \LaTeX\ already declares. The mathtime % package also declares an extra symbol font, bringing the total to % twelve. The maximum number of symbol \emph{and} math alphabet fonts % that can be used in a math version is sixteen. So the above allocation % scheme does not leave room for many extra math symbols (such as the % AMS symbols) or math alphabets (such as |\mathit|). % % Before loading the \textsf{bm} package you may define |\bmmax| % and |\hmmax| to be suitable values, for instance you may want % to set |\newcommand\hmmax{0}| if you will not be using |\hm| % much, but you do have a heavy math version defined. % % Even if |\bmmax| is set to zero, |\bm| will still access the correct % bold fonts (by accessing the fonts via |\boldmath|) but this method % is slower, and does not work with delimiters. Delimiters can only be % made bold if the bold font has been allocated. % % Conversely if you have a non standard font set that makes available % extra math delimiters and accents in bold and medium weights you may % want to \emph{increase} |\bmmax| so that fonts are allocated for % your font set. % % \section{Features} % In most cases this package should work in a fairly self explanatory % way, but there are some things that might not be obvious. % % \subsection{Interaction with Math Alphabet Commands} % % As mentioned above, |\bm| goes to some trouble to try to make a % command that is just like its argument, but using a bold font. % This does not always produce the effect that you might expect. %\begin{verbatim} % $1 g \bm{g}$ % $2 \mathrm{g \bm{g}}$ % $3 {g} \bm{{g}}$ % $4 \mathrm{{g} \bm{{g}}}$ % $5 \mathrm{g} \bm{\mathrm{g}}$ %\end{verbatim} % produces the following: % \begin{flushleft} % $1 g \bm{g}$ % $2 \mathrm{g \bm{g}}$ % $3 {g} \bm{{g}}$ % $4 \mathrm{{g} \bm{{g}}}$ % $5 \mathrm{g} \bm{\mathrm{g}}$ % \end{flushleft} % In math mode `g' is effectively a command that produces the letter `g' % from the `letters' alphabet, unless a Math Alphabet command is in % effect, in which case the `g' comes from the specified alphabet. % |\bm{g}| makes an equivalent command, but which defaults to a bold % letter alphabet. So in the first example |\bm{g}| is bold math italic, % but in the second example the |\mathrm| applies to both |g| and % |\bm{g}| in the same way, and so they are both roman. % % |\bm| only inspects the `top level' definition of a command, for more % complicated expressions, and anything inside a |{ }| group, |\bm| % forces bold fonts by essentially the same (slow) technique used by the % AMS |\boldsymbol| command (but |\bm| still takes more care of the % spacing). So the third example produces identical output to the first % (but \TeX\ takes more time producing it). % % In the fourth example the |\mathrm{\bm{g}}| is essentially % equivalent to |\mathrm{\mbox{\boldmath$g$}}|. Currently math alphabet % settings are not passed down to `nested' math lists, and so in this % example, the |\mathrm| has no effect, and a bold math italic $\bm g$ % is obtained. % % Similarly the last example is equivalent to % |$\mbox{\boldmath$\mathrm{g}$}}| and so in this case, one obtains a % bold roman \textbf{g}. % % \subsection{Delimiters} % \TeX\ can treat character tokens in two\footnote % {Well more than two really.} % ways. If there is a preceding % |\left| or |\right| it can treat them as a delimiter, otherwise it can % treat them as a standard character. For example |\left<\right>| % produces $\left<\right>$, which is totally different from |<>|, which % produces $<>$. % % \TeX\ can only do this for character tokens. Commands such as % |\langle| do not act in this way. This means that |\bm| has to decide % whether to treat a character as a delimiter or not. The rule it uses % is, it makes a delimiter command for a character if the previous % token in the argument was |\left| or |\right|. So |\left\bm{<}| does % not work, but |\bm{\left<}| does. % % \subsection{Command Arguments} % % Normally if a command takes arguments the full command, including % any arguments, should be included in |\bm|. % % So |\bm{\overbrace{abc}}| (producing \smash{$\bm{\overbrace{abc}}$}) % not % |\bm{\overbrace}{abc}|. If you do not include all the arguments you % will typically get the error message:\\ % |Runaway argument?|\\ % |! Forbidden control sequence found while scanning use of| % \texttt{\ldots} % % However commands defined in terms of the \TeX\ accent and % radical primitives \emph{may} be used without their arguments. % So |\bm{\hat}{a}| produces $\bm{\hat}{a}$, a bold accent over a % non-bold $a$ (compare $\hat{a}$) % whereas |\bm{\hat{a}}| makes both the $a$ and the accent bold, % $\bm{\hat{a}}$. % Similarly, although the \LaTeX\ command |\sqrt| must be used with its % arguments, |\sqrtsign| may be used as in |\bm\sqrtsign{abc}| to % produce $\bm\sqrtsign{abc}$ rather than $\sqrtsign{abc}$ or % $\bm{\sqrtsign{abc}}$ % % If you really need to make a command with arguments use bold fonts % without making all of the arguments bold, you can explicitly % reset the math version in the argument, eg:\\ % $\begin{array}{ccc} % |\sqrt{xyz}|&|\bm{\sqrt{xyz}}|&|\bm{\sqrt{\mbox{\unboldmath$xyz$}}}|\\ % \sqrt{xyz}& \bm{\sqrt{xyz}}& \bm{\sqrt{\mbox{\unboldmath$xyz$}}} % \end{array}$ % % \subsection{Bold fonts} % This package interrogates the font allocations of the bold and heavy % math versions, to determine which bold fonts are available. % This means that it is best to load the package \emph{after} % any packages that define new symbol fonts, or (like the % \textsf{mathtime} package) completely change the symbol font % allocations. % % If no bold font appears to be available for a particular symbol, % |\bm| will use `poor man's bold' that is, overprinting the same % character in slightly offset % positions to give an appearance of boldness. % % In the standard Computer Modern font set, there is no bold % `large symbols' font. In the `mathptm' and (standard) mathtime % font sets there are no bold math fonts. In the `mathtime plus' % font set there are suitable fonts for bold and heavy math setting, % and so |\bm| and |\hm| work well. Similarly in the basic Lucida % New Math font set there are no bold math fonts, so |\bm| will % use `poor man's bold. However if the Lucida Expert set is used, % Then |\bm| will detect, and use the bold math fonts that are % available. % % As discussed above, one may set |\bmmax| higher or lower than its % default value of four to control the font allocation system. Finer % control may be gained by explicitly declaring bold symbol fonts. % Suppose you have a symbol font `xyz' that is available in medium and % bold weights, then you would declare this to \LaTeX\ via:\\ % |\DeclareSymbolFont{extras} {OMS}{xyz}{m}{n}|\\ % |\SetSymbolFont{extras}{bold}{OMS}{xyz}{bx}{n}|\\ % At this point the symbols wil be available in the normal math % version, and their bold variants in |\boldmath|. If you also % declare:\\ % |\DeclareSymbolFont{boldextras}{OMS}{xyz}{bx}{n}|\\ % That is, declare a symbol font whose name is formed by prefixing % `bold' (or `heavy') to an existing symbol font, then |\bm| (or % |\hm|) will use this font directly, rather then accessing the % `extras' symbol font via |\boldmath|. % % \subsection{Strange failures} % In order to get the correct spacing, |\bm| has to `investigate' the % definition of the commands in its argument. It is possible that % some strange constructions could `confuse' this investigation. % If this happens then \LaTeX\ will almost certainly stop with a strange % error. This should not happen with any of the math symbols % defined in the base \LaTeX\ or AMS distributions, or any commands % defined in terms of those symbols using normal \LaTeX\ math % constructs. However if some command does fail to work inside |\bm| % you should always be able to surround it with an extra set of braces % |\bm{{\cmd}}| rather than |\bm{\cmd}|. |\bm| will not then attempt % to set the correct spacing, so you may need to set it explicitly, % for instance, for a relation, |\bm{\mathrel{\cmd}}|. % % \subsection{AMS package \textsf{amsbsy}} % The |\bm| command shares some functionailty with the |\boldsymbol| % command from the AMS \LaTeX\ collection. To aid in moving documents % between these two packages, this package defines |\boldsymbol| and % |\heavysymbol| as alternative names for |\bm| and |\hm|. % % \StopEventually{} % % \section{Implementation} % % \changes{v0.01}{1996/12/01} % {Initial DPC attempt, % remove all assumptions about mathtime encoding} % \changes{v0.02}{1996/12/02} % {Add \cs{mathchoice} stuff} % \changes{v0.03}{1996/12/12} % {Completely reimplement (again). Add \cs{bmdefine}.} % \changes{v0.04}{1996/12/12} % {Add \cs{hm} and support for special active mathcode.} % \changes{v0.05}{1996/12/12} % {Assorted fixes} % \changes{v0.99}{1997/01/16} % {First public version} % \changes{v1.0a}{1997/02/14} % {First ctan version (same as 0.99b)} % \changes{v1.0b}{1997/04/14} % {Add to tools bundle.} % % % % The commands |\bm| and |\hm| work by defining a number of additional % symbol fonts corresponding to the standard ones % `operators', `letters', `symbols', and `largesymbols'. % The names for these symbols fonts are produced by prefixing the usual % name with `bold' or `heavy'. % % For maximum flexibility we get the font definitions by looking in the % corresponding math versions, i.e., into |\mv@bold| and if defined into % |\mv@heavy|. % % \begin{macrocode} %<*package> % \end{macrocode} % \changes{v0.09}{1996/12/19} % {Always define \cs{bm} even if no bold math} % % \begin{macro}{\bm@table} % \changes{v0.10}{1997/01/04} % {Macro added} % \changes{v0.12}{1997/01/10} % {Ensure do not allocate too many math group slots.} % \changes{v0.99a}{1997/01/17} % {Let \cs{hm} use font allocated for \cs{bm}} % \changes{v0.99b}{1997/01/19} % {Restore NFSS internals} % \begin{macro}{\bm@boldtable} % \begin{macro}{\bm@heavytable} % The table, |\bm@table|, (which is locally |\let| to either the bold % or heavy version) defines, for each \meta{math group} (\meta{fam}), % the `offset' to the bold version of the specified symbol font. % If there is no bold symbol font defined, the offset will be % set to zero if there is a bold font assigned to this slot in the % bold math version, or $-1$ if the font in the bold math version % is the same as the one in the normal math version. In this case % a `poor man's bold' system of overprinting is used to achieve % boldness where this is possible. % % The settings are made at the time this package is read, and so % it is best to load this package late, after any font loading packages % have been loaded. Symbol fonts loaded after this package will get the % offset of zero, so they will still be made bold by |\bm| as long as an % appropriate font is declared for the bold math version. % % |\bm@boldtable| and |\bm@heavytable| are set up using very similar % code, which is temporarily defined to |\bm|, to save wasting a csname. % Similarly |\bm@pmb|\ldots\ (which will be defined later) are used % as scratch macros. % % The general plan. Run through the fonts allocated to the normal math % version. Ignore \meta{math alphabet} allocations\footnote{For now?} % but for each math symbol font, look in the math version specified by % |#1| (bold or heavy). If the font there is different, then allocate % a new symbol font in the normal math version to access that bold font % and place the numerical difference between the allocations of the bold % and normal font into the table being built (|\bm@boldtable|, if |#1| % is bold). If the symbol allocation is already greater than |\bmmax| % do not allocate a new symbol font, but rather set the offset in the % table to zero. |\bm| will detect this, and use |\boldmath| on its % argument in this case, so the bold font will be accessed but more % slowly than using a direct access to a bold font allocated into the % normal math version. If the font allocated in the bold math version is % the same as the font in the normal math version, set the offset to % $-1$, which is a flag value that causes |\bm| to use `poor man's bold' % overprinting three copies of the symbol, offset slightly to give an % appearance of boldness. % % Fonts containing delimiters and math accents \emph{must} be allocated % into the normal math version if they are to be used with |\bm|. (In % these cases |\bm| will produce the normal weight symbol, rather than % using |\boldmath| or poor man's bold.) % % \begin{macrocode} \def\bm#1#2{% % \end{macrocode} % This code can not work inside a group, as that would affect any symbol % font allocations, so instead use some scratch macros to save and % restore the definitions of commands we need to change locally. % \begin{macrocode} \let\bm@pmb\install@mathalphabet \let\bm@pmb@\getanddefine@fonts \let\bm@pmb@@\or \edef\bm@general{\f@encoding/\f@family/\f@series/\f@shape/\f@size}% % \end{macrocode} % % |#2| specifies the maximum number of fonts to allocate % (either |\bmmax| or |\hmmax|). First check against |\count18| % that there are that many slots left, and if not reduce accordingly. % Put the resulting value in |\@tempcnta|. % \begin{macrocode} \@tempcnta#2% \count@-\count18% \advance\count@-\@tempcnta \advance\count@15\relax \ifnum\count@<\z@ \advance\@tempcnta\count@ \fi % \end{macrocode} % Make |\or| non-expandable, so we can build an |\ifcase| bit-by-bit % in a sequence of |\edef|s. % \begin{macrocode} \let\or\relax % \end{macrocode} % % Initialise the table (to |\@gobble| to remove the first |\or|). % \begin{macrocode} \expandafter\let\csname bm@#1table\endcsname\@gobble % \end{macrocode} % % Helper macro that adds the next entry to the table being built. % \begin{macrocode} \def\bm@define##1{% \expandafter\xdef\csname bm@#1table\endcsname{% \csname bm@#1table\endcsname\or##1}}% % \end{macrocode} % % Each symbol font is recorded in the math version list by a sequence % such as:\\ % | \getanddefine@fonts \symsymbols \OMS/cmsy/m/n|\\ % Where the first argument is a chardef token carrying the number % allocated (to symbols, in this example), and the second argument is a % csname whose \emph{name} denotes the font used. % So locally redefine |\getanddefine@fonts| to compare |#2| with % the name in the appropriate slot in the bold math version. % \begin{macrocode} \def\getanddefine@fonts##1##2{% \def\@tempa{##2}% % \end{macrocode} % % \begin{macrocode} \def\@tempb####1##1####2####3\@nil{\def\@tempb{####2}}% % \end{macrocode} % % \begin{macrocode} \expandafter\expandafter\expandafter \@tempb\csname mv@#1\endcsname\@nil % \end{macrocode} % % Now |\@tempa| and |\@tempb| contain the names of the fonts allocated % to this slot in the two math versions. % \begin{macrocode} \ifx\@tempa\@tempb % \end{macrocode} % If they are the same, set this offset to $-1$, as a flag to use % poor man's bold. % \begin{macrocode} \bm@define\m@ne \else % \end{macrocode} % Else make a new name by adjoining |#1| to the name of the symbol font % eg, |\symboldsymbols| to match |\symsymbols|. If that font has already % been allocated, or if |\@tempcnta| is positive so we can allocate a % new slot for this font, then the table will be % set with the offset between the two fonts. otherwise set the offset to % zero (so |\boldmath| will be used to access the font). % \begin{macrocode} \edef\@tempa{sym#1\expandafter\@gobblefour\string##1}% \ifnum\@tempcnta<% \expandafter\ifx\csname\@tempa\endcsname\relax \@ne \else \m@ne \fi % \end{macrocode} % % \begin{macrocode} \bm@define\z@ \else % \end{macrocode} % % If the font is not yet allocated, allocate it now, using % an internal hack into |\DeclareMathSymbolFont|. % % However before allocating it look in the bold math version % to see if it is the same, and if so use that. For example % with Mathtime the `operators' font in the `heavy' math version % is different from that in `normal', but it is the same as % the font in `bold' (Times bold). So rather than allocate % |\symheavyoperators| just set it equal to |\symboldoperators|. % \begin{macrocode} \expandafter\ifx\csname\@tempa\endcsname\relax \begingroup \escapechar\m@ne \edef\@tempb{\endgroup \noexpand\split@name \expandafter\string\@tempb}% \@tempb/\@nil % \end{macrocode} % % \begin{macrocode} \expandafter\ifx \csname symbold\expandafter\@gobblefour\string##1\endcsname \relax % \end{macrocode} % If no font has been allocated for |\bm| yet, then allocate it now. % \begin{macrocode} \expandafter\new@mathgroup\csname\@tempa\endcsname \expandafter\new@symbolfont\csname\@tempa\endcsname \f@encoding\f@family\f@series\f@shape % \end{macrocode} % Reduce by one the number of fonts we can still allocate. % \begin{macrocode} \advance\@tempcnta\m@ne % \end{macrocode} % % \begin{macrocode} \else % \end{macrocode} % Else do a similar look into the bold mathgroup. % Use |\bm@expand| as a scratch macro to save on string space. % \begin{macrocode} \def\bm@expand####1##1####2####3\@nil{\def\bm@expand{####2}}% \expandafter\expandafter\expandafter \bm@expand\csname mv@bold\endcsname\@nil % \end{macrocode} % % \begin{macrocode} \ifx\bm@expand\@tempb % \end{macrocode} % If the font just found (in heavy) is the same as the font in bold % use the slot (in normal) previously allocated for the bold font. % (That clear?) % \begin{macrocode} \expandafter\let\csname\@tempa\expandafter\endcsname \csname symbold\expandafter \@gobblefour\string##1\endcsname % \end{macrocode} % % \begin{macrocode} \else % \end{macrocode} % Otherwise allocate a new slot for it. % \begin{macrocode} \expandafter\new@mathgroup\csname\@tempa\endcsname \expandafter\new@symbolfont\csname\@tempa\endcsname \f@encoding\f@family\f@series\f@shape \advance\@tempcnta\m@ne % \end{macrocode} % % \begin{macrocode} \fi \fi % \end{macrocode} % % \begin{macrocode} \else % \end{macrocode} % If the font has been allocated already, use the existing allocation. % \begin{macrocode} \PackageInfo{bm}% {Symbol font \@tempa\space already defined.\MessageBreak Not overwriting it}% \fi % \end{macrocode} % Whether the font has just been allocated, or whether it was previously % allocated, compute the offset and add it to the table. % \begin{macrocode} \count@\csname\@tempa\endcsname \advance\count@-##1% \bm@define{\the\count@\relax}% \fi \fi}% % \end{macrocode} % % The math version list also contains information about math alphabet % commands, but we want to ignore those here, so \ldots % \begin{macrocode} \let\install@mathalphabet\@gobbletwo % \end{macrocode} % % Having set up the local definitions, execute the list for the normal % math version. % \begin{macrocode} \mv@normal % \end{macrocode} % % So now the offsets are all entered into the table, separated by % |\or|. % Finish off the definition by making this an |\ifcase|. Add a default % value of zero, so that any symbol fonts declared later will also % work, as long as a bold version is assigned to the bold math version. % \begin{macrocode} \expandafter\xdef\csname bm@#1table\endcsname{% \noexpand\ifcase\@tempcnta \csname bm@#1table\endcsname \noexpand\else \z@ \noexpand\fi}% % \end{macrocode} % % Put things back as they were. % \begin{macrocode} \expandafter\split@name\bm@general\@nil \let\install@mathalphabet\bm@pmb \let\getanddefine@fonts\bm@pmb@ \let\or\bm@pmb@@} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\bmmax} % To save declaring too many symbol fonts, do not auto-declare % any more than |\bmmax| bold symbol fonts into the normal math % version. Any bold fonts not so allocated will be accessed via % |\boldmath| which is slower and doesnt work for delimiters % and accents. It may be set in the preamble with |\newcommand| % but use |\chardef| here for a slight efficiency gain. % % If this is set to a higher value before this % package is loaded, keep that value. % \begin{macrocode} \ifx\bmmax\@undefined \chardef\bmmax=4 \fi % \end{macrocode} % % If there is no bold math version, It is very easy to set up % the table, no need to use all the tricky code above. % Also, at the end of the package redefine the internal macro % that |\bm| uses to call |\boldmath|, to use poor man's bold % instead. % \begin{macrocode} \ifx\mv@bold\@undefined \def\bm@boldtable{\m@ne} \AtEndOfPackage{% \def\bm@gr@up#1#2{% \bm@pmb{#2}}} \else % \end{macrocode} % Otherwise use the definition of |\bm| above to set up |\bm@boldtable| % by comparing the fonts available in the normal and bold math versions. % \begin{macrocode} \bm{bold}\bmmax % \end{macrocode} % % \begin{macro}{\mathbf} % As the bold font has been defined as a symbol font, make |\mathbf| % access that rather than have it allocate a new math group for the % same font. (Just in case there were no free slots wrap this % in an extra test.) % \begin{macrocode} \@ifundefined{symboldoperators} {} {\DeclareSymbolFontAlphabet\mathbf{boldoperators}} % \end{macrocode} % \end{macro} % % \begin{macrocode} \fi % \end{macrocode} % \end{macro} % % \begin{macro}{\hmmax} % % Same for heavy (but default to three this time (enough for mathtime % plus, as no heavy operators font). % \begin{macrocode} \ifx\hmmax\@undefined \chardef\hmmax=3 \fi % \end{macrocode} % % Similarly if there is a heavy math version, set up |\bm@heavytable|. % (If there is no heavy math version, do nothing here, as |\hm| will be % set to |\bm| later, once that is defined.) % \begin{macrocode} \ifx\mv@heavy\@undefined \else \bm{heavy}\hmmax \fi % \end{macrocode} % \end{macro} % % % \begin{macro}{\bm@general} % \changes{v1.0d}{1997/11/15} % {extra code to support prime lookahead and breqn} % |\bm| is pretty much |\bmdefine\bm@command| followed by executing % |\bm@command|. It would in principle be possible to execute the % emboldened tokens directly, rather than building up a macro first, % but (as I learned the hard way) it's difficult to do this in the midst % of all these nested |\if| constructs. % First extract the central bit of code for |\hm| |\bm| |\hmdefine| and % |\bmdefine|. Note that in the case of the inline versions they take % an argument and brace it, rather than relying on |\bm@general| to pick % up the argument. This makes the code robust with respect to premature % expansion. % \begin{macrocode} \begingroup \catcode`\'=\active \@firstofone{\endgroup \def\bm@general#1#2#3#4{% \begingroup % \end{macrocode} % \changes{v1.0d}{1997/11/15} % {make nested \cs{bm} vanish completely, not leave a brace group} % First locally disable |\bm| and |\hm|, as they would mess things % up terribly, and the original Spivak versions used the syntax % |\bmdefine\balpha{\bm\alpha}|. % \begin{macrocode} \let\bm\@firstofone \let\hm\@firstofone % \end{macrocode} % Now initialise the commands used to save the tokens constructed. % \begin{macrocode} \global\let\bm@command\@empty \let\@let@token\@empty % \end{macrocode} % As we want to expand the macros to look at their definition % turn off protection. Otherwise the |\protect| will be carried over % and apply to the wrong token, eg |{|. % \begin{macrocode} \let\protect\@empty \let\@typeset@protect\@empty % \end{macrocode} % Set up either bold or heavy % \begin{macrocode} \def\bm@mathchoice{\bm@m@thchoice#1}% \def\bm@group{\bm@gr@up#1}% \let\bm@table#2% % \end{macrocode} % Make sure |\left| and |\right| are really non expandable, % and not |\ifx| equal to anything else. % \changes{v1.0d}{1997/11/15} % {make sure \cs{left} is primitive} % \begin{macrocode} \let\left\holdinginserts % \end{macrocode} % These two save on the number of |\ifx| tests below. % \begin{macrocode} \let\right\left \let\mskip\mkern % \end{macrocode} % Definition of |'| locally modified so as not to use |\futurelet| % in the look ahead, but to make the |\prime| available at the top level % to be made bold, or heavy or whatever. % |'| is locally active for this definition. % \changes{v1.0d}{1997/11/15} % {prime code added} % \begin{macrocode} \let\bm@prime\copy \def'{\bm@prime\prime\relax}% % \end{macrocode} % For optional argument commands. This expandable version of % |\@ifnextchar| is not 100\% safe, but works for |\sqrt| unless % you put something really strange in the arguments. % \changes{v0.11}{1997/01/06} % {\cs{@ifnextchar} made safe.} % \begin{macrocode} \def\@ifnextchar##1##2##3##4{% \if##1##4% \expandafter\@firstoftwo \else \expandafter\@secondoftwo \fi {##2##4}{##3{##4}}}% % \end{macrocode} % For AMS definitions. % \begin{macrocode} \let\DN@\copy \let\FN@\copy \let\next@\copy \global\let\bm@first\@empty % \end{macrocode} % For breqn definitions. % \begin{macrocode} \let\@ifnext\@ifnextchar \let\measure@lhs\copy \let \rel@break\copy \let \bin@break\copy \let \after@open\copy \let \after@close\copy % \end{macrocode} % Make sure things like |\pounds| take the `math branch' even % in |\bmdefine| (which is not executed in math mode). % \begin{macrocode} \let\ifmmode\iftrue % \end{macrocode} % The last redefinition just makes |\mathit| type commands re-insert % themselves (more or less) as if they are allowed to expand % they die horribly if the expansions are put into |\mathchoice| % and so executed more than once. % \begin{macrocode} \def\select@group##1##2##3##4{{% \protect##1{##4}}}% \def\use@mathgroup##1##2##3{{% \protect\use@mathgroup##1{##2}{##3}}}% % \end{macrocode} % % So now start looking at the argument. % \changes{v0.10}{1997/01/04} % {Use \cs{bm@end}} % \begin{macrocode} \bm@expand#4\bm@end \endgroup % \end{macrocode} % % Finally outside the group either execute |\bm@command| (for |\bm|) % or save its definition (for |\bmdefine|). % \begin{macrocode} #3} % \end{macrocode} % End of the |\@firstofone| above, and the scope of the active |'|. % \begin{macrocode} } % \end{macrocode} % \end{macro} % % \begin{macro}{\bm} % \changes{v1.0d}{1997/11/15} % {Make \cs{bm} grab its argument even when protected} % Set up the bold (rather than heavy) version, and run |\bm@command| % right at the end, to execute the emboldened argument. % The argument is grabbed by the top level function, and explicitly % braced, so that |\bm| works even if the braces are omitted round % its argument in a `moving argument'. % \begin{macrocode} \DeclareRobustCommand\bm{% \bm@general\boldmath\bm@boldtable\bm@command} \protected@edef\bm#1{\bm{#1}} % \end{macrocode} % \end{macro} % % \begin{macro}{\DeclareBoldMathCommand} % \changes{v0.07}{1996/12/14} % {Macro added} % \begin{macro}{\bm@declare} % \changes{v0.07}{1996/12/14} % {Macro added} % |DeclareBoldMathCommand|%^^A % \oarg{mathversion}\marg{command}\marg{math expression}\\ % looks like |\bm| except at the end the specified command is % globally defined to be |\bm@command|. % The \meta{mathversion} defaults to `bold'. % \begin{macrocode} \def\DeclareBoldMathCommand{\@testopt\bm@declare{bold}} % \end{macrocode} % % \begin{macrocode} \def\bm@declare[#1]#2{% \expandafter\bm@general \csname #1math\expandafter\endcsname \csname bm@#1table\endcsname {\bm@define#2}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\bmdefine} % |\bmdefine| Shorthand for |\DeclareBoldMathCommand[bold]|. % % |\bm| is empty within the definition, so that either\\ % |\bmdefine\balpha{\bm\alpha}| or |\bmdefine\balpha{\alpha}| \\ % may be used. (The former just for compatibility with the original % version for plain \TeX). % \begin{macrocode} \def\bmdefine{\DeclareBoldMathCommand[bold]} % \end{macrocode} % \end{macro} % % \begin{macro}{\hm} % \changes{v1.0d}{1997/11/15} % {Make \cs{hm} grab its argument even when protected} % \begin{macro}{\hmdefine} % Same again for |\hm|. % \begin{macrocode} \ifx\mv@heavy\@undefined % \end{macrocode} % % If there is no heavy math version defined, let |\hm| be defined % as |\bm|. Currently there is no warning given, perhaps there should % be, or even an error? % \begin{macrocode} \let\hm\bm \let\heavymath\boldmath \let\bm@heavytable\bm@boldtable % \end{macrocode} % % \begin{macrocode} \else % \end{macrocode} % % Otherwise define |\hm| and |\hmdefine| in direct analogy with the % above. % \begin{macrocode} \DeclareRobustCommand\hm{% \bm@general\heavymath\bm@heavytable\bm@command} \protected@edef\hm#1{\hm{#1}} % \end{macrocode} % % \begin{macrocode} \def\hmdefine{\DeclareBoldMathCommand[heavy]} % \end{macrocode} % % \begin{macrocode} \fi % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\bm@end} % \changes{v0.10}{1997/01/04} % {Macro added} % Normally speaking |\outer| declarations should be avoided at all % costs. (\LaTeX\ redefines all of plain \TeX's allocation macros % to be non-outer.) However this is one place where it seems like a % good idea. If a command taking an argument is put in |\bm| without % its argument, then the |\@@end| terminating token would be taken as % the argument, and so the rest of the paragraph would be gobbled up % and the \LaTeX\ would die horribly. So make the internal terminating % token |\outer|. (The actual test for termination is made against % |\@@end| not |\bm@end| as this macro will be expanded by the look-ahead % system.) % \begin{macrocode} \outer\def\bm@end{\@@end} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@expand} % \changes{v0.11}{1997/01/06} % {Double up.} % \begin{macro}{\bm@exp@nd} % \changes{v0.11}{1997/01/06} % {Macro added} % |\afterassignment| trick to fully expand the following tokens until % the first non-expandable token is revealed. This may discard a space % token (which is what \TeX\ is looking for) but that doesn't matter in % math mode. The expansion lookahead is done twice in case any stray % space tokens have crept in.\footnote{The need for this was noticed % while testing \cs{sqrt}. The definition of \cs{root} inherited from % plain \TeX\ has an anomalous space token, that is normally harmless % (just wastes memory), but which killed earlier versions of this % package.} % \begin{macrocode} \def\bm@expand{\afterassignment\bm@exp@nd\count@`\a} % \end{macrocode} % % \begin{macrocode} \def\bm@exp@nd{\afterassignment\bm@test\count@`\a} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\bm@test} % Normally we will grab the non-expandable token as a macro argument % but better check it is not |{| first. Save the previous token % so we can check later if it was |\left|, in which case use the delcode % rather than the mathcode if the current token is a character. % \begin{macrocode} \def\bm@test{% \let\bm@previous\@let@token \futurelet\@let@token\bm@test@} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@test@} % If looking at a single token, switch to |\bm@test@token|, else if % looking at a |{ }| group, grab the whole group with |\bm@group|. % A |\bgroup| token will take the wrong branch here (currently not % trapped). % \begin{macrocode} \def\bm@test@{% \ifx\@let@token\bgroup \expandafter\bm@group \else \expandafter\bm@test@token \fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@gr@up} % \changes{v1.0c}{1997/10/09} % {Extra brace around argument for \cs{over}} % If faced with a group, % If we are in math mode, stick it in a |\boldsymbol| like construct % and then recurse on |\bm@expand|. % Otherwise just use |\bfseries\boldmath|. % The actual test is deferred till `run time'. % Here and elsewhere could deal with the inner list with an inner call % to |\bm|, but that doesn't seem to gain very much, and complicates the % code quite a bit. % % |#1| is either |\boldmath| or |\heavymath|. % Need to add an extra set of explicit braces around |#2| as otherwise % the math style commands applied in |\mathchoice| might only apply % to the first half of an |\over| construction. % \begin{macrocode} \def\bm@gr@up#1#2{% \bm@add{{\bm@gr@@p#1{{#2}}}}} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@gr@@p} % |#1| is either |\boldmath| or |\heavymath|. % \begin{macrocode} \def\bm@gr@@p#1#2{% \ifmmode \bm@mchoice#1{#2}{#2}{#2}{#2}% \else \bfseries#1#2% \fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@test@token} % If not facing a |{ }| group then test to see what we have. % Basic idea: Trap |\mathchardef| tokens, character tokens, and calls to % |\mathchar|, |\mathaccent|, etc, and change the \emph{math-group} % (fam) to point at the bold version. % Other things just copy straight over to the command being built. % (Anything inside a |\mathop| or similar will end up being made bold % as the |\mathop| will be copied over, but its argument will be made % bold by the group code above. % \begin{macrocode} \def\bm@test@token#1{% \let\bm@next\@empty % \end{macrocode} % % Stop here. Note that it is vital that the terminating token % is non-expandable and defined, rather than the usual \LaTeX\ % terminators |\@nil| or |\@@|. (Worse still would be a `quark' % like |docstrip|'s |\qStop|.) % \begin{macrocode} \ifx#1\@@end % \end{macrocode} % % |\bm@mathchoice| uses macro arguments, so need to make the tail % recursion explicit here. All the other cases recurse by way of % |\afterassignment| which means all the trailing |\fi| are eaten % while making the assignment. % \begin{macrocode} \else\ifx#1\mathchoice \let\bm@next\bm@mathchoice % \end{macrocode} % % The main point: Find these expressions, and change the mathgroup. % \begin{macrocode} \else\ifx#1\mathchar \afterassignment\bm@mathchar\count@ \else\ifx#1\mathaccent \afterassignment\bm@mathaccent\count@ \else\ifx#1\delimiter \afterassignment\bm@delimiter\count@ \else\ifx#1\radical \afterassignment\bm@radical\count@ % \end{macrocode} % % Need to trap spaces otherwise digits will get turned to bold % mathchars. % \begin{macrocode} \else\ifx#1\mkern \bm@register#1{\muskip\z@}% \else\ifx#1\kern \bm@register#1\dimen@ \else\ifx#1\penalty \bm@register#1\count@ % \end{macrocode} % % \begin{macrocode} \else\ifcat\noexpand#1\relax % \end{macrocode} % Other command, look if it's a mathchardef token (otherwise just add % it). % \begin{macrocode} \xdef\meaning@{\meaning#1}% \expandafter\bm@mchar@test\meaning@""\@nil#1% % \end{macrocode} % \changes{v1.0d}{1997/11/15} % {New active \cs{mathcode} code.} % Character token. % If it is of catcode 11 or 12, get its mathcode. % If that is |"8000| replace the token by its active version, and then % let bm expansion look again at the character. Being really active % this time, it will expand away (probably). % % If the previous token was |\left| or |\right|, get the delcode % instead of the mathcode. % \begin{macrocode} \else\ifcat.\ifcat a#1.\else#1\fi \count@\mathcode`#1\relax \ifnum\count@=\mathcode`\'% \begingroup\uccode`\~`#1\uppercase{\endgroup \def\bm@next{\bm@expand~}}% \else \ifx\bm@previous\left \count@\delcode`#1\relax \bm@delimiter \else \bm@mathchar \fi \fi \else % \end{macrocode} % And final possibility: % a character token of catcode other than 11 or 12. % \begin{macrocode} \bm@add{#1}% \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi \bm@next} % \end{macrocode} % \end{macro} % % % \begin{macro}{\bm@define} % \changes{v0.08}{1996/12/18} % {Defined commands now always robust} % End code for |\bmdefine|. Define the given command name to the % robust form of the accumulated code. % % If |\bm@command| is equal to |\@gtempa| then it is a macro whose % expansion is a single call to |\mathchar|, so that can be optimised % with a |\mathchardef|. % \begin{macrocode} \def\bm@define#1{% \begingroup \ifx\bm@command\@gtempa \def\mathchar{\global\mathchardef#1}% \bm@command \else % \end{macrocode} % Rather than simply |\let#1\bm@command|, make the defined command % robust. |\bm@first| is normally empty, but might be something like % |\DOTSI| which needs to be lifted to the top level, in front % of any |\protect| because of the lookahead mechanism used % in the \textsf{amsmath} package. % \begin{macrocode} \toks@\expandafter{\bm@command}% \xdef#1{\bm@first\noexpand\bm@protect\noexpand#1{\the\toks@}}% \fi \endgroup} % \end{macrocode} % \end{macro} % % % \begin{macro}{\bm@protect} % \changes{v0.08}{1996/12/18} % {macro added} % Commands defined by |\bmdefine| re-insert themselves % if protection is enabled. % \begin{macrocode} \def\bm@protect#1{% \ifx\protect\@typeset@protect \expandafter\@firstofone \else \protect#1\expandafter\@gobble \fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@mchoice} % |\boldsymbol|, more or less. % |#1| is either |\boldmath| or |\heavymath|. % \begin{macrocode} \def\bm@mchoice#1#2#3#4#5{% \mathchoice{\hbox{#1$\displaystyle\m@th#2$}}% {\hbox{#1$\textstyle\m@th#3$}}% {\hbox{#1$\scriptstyle\m@th#4$}}% {\hbox{#1$\scriptscriptstyle\m@th#5$}}} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@m@thchoice} % Action if you find a |\mathchoice|. Add the bold version to % |\bm@command| then recurse. % % |#1| is either |\boldmath| or |\heavymath|. % \begin{macrocode} \def\bm@m@thchoice#1#2#3#4#5{% \bm@add{\bm@mchoice#1{#2}{#3}{#4}{#5}}} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@register} % \changes{v0.07}{1996/12/14} % {Macro added} % Combined code for setting up |\bm@r@gister| with the correct % register type. % \begin{macrocode} \def\bm@register#1#2{% \def\@tempa{#1\the#2}% \afterassignment\bm@r@gister#2} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@r@gister} % \changes{v0.06}{1996/12/12} % {Support \cs{mskip}} % \changes{v0.07}{1996/12/14} % {Combine all register macros} % |\mkern| itself would transfer to |\bm@command| without any special % test, but any explict dimension following would be converted to % |\mathchar|. So trap this and grab the muskip as a muskip. % This is used in |\iiint|. |\penalty| was needed for the % AMS version of |\colon|, and so do most of the others as well. % \begin{macrocode} \def\bm@r@gister{% \bm@xadd{\@tempa\space}} % \end{macrocode} % \end{macro} % % % \begin{macro}{\bm@mathchar} % \changes{v0.10}{1997/01/04} % {Modify to use \cs{boldmath} or \cs{pmb} if needed.} % Change the family (math group) of a mathcode and then % use the modified code with |\mathchar|. If there is no % suitable bold font in the current math version, use the original % unmodified mathcode, but switch to |\boldmath| (if there is a bold % font there) or use `poor man's bold'. Note that these other % possibilities are only possible here, not for the otherwise similar % code for |\delimiter| or |\mathaccent|, as those commands % must work with fonts from the same math version. % % Finally recurse down the list. % \begin{macrocode} \def\bm@mathchar{% % \end{macrocode} % % \begin{macrocode} \@tempcntb\count@ \let\@tempa\bm@group % \end{macrocode} % % |\bm@changefam| will isolate the math group from the mathcode % and look up the offset in the current table. % \begin{macrocode} \bm@changefam{}% % \end{macrocode} % % If the mathcode has changed, then just add the new |\mathchar| % (saving |\@gtempa| allows |\bmdefine| to optimise this to a % mathchardef if it turns out to be the only symbol in the argument). % \begin{macrocode} \ifnum\count@>\@tempcntb % \end{macrocode} % % \begin{macrocode} \ifx\bm@command\@empty \xdef\@gtempa{\mathchar\the\count@\space}% \fi \bm@xadd{\mathchar\the\count@\space}% \else % \end{macrocode} % % Otherwise grab the math class from the math code % and add that (locally zapping |\bm@expand| as we don't want % to recurse at this point). % \begin{macrocode} \begingroup \divide\count@"1000 \let\bm@expand\relax \bm@xadd\bm@class \endgroup % \end{macrocode} % |\@tempa| will be |\bm@group| (which applies |\boldmath| and % |\mathchoice|) unless it was changed by |\bm@changefam| to |\bm@pmb| % (which applies a `poor man's bold' construction in a |\mathchoice|). % \begin{macrocode} \edef\@tempb{% \noexpand\@tempa{\mathchar\the\count@\space}}% \@tempb \fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@pmb} % \changes{v0.10}{1997/01/04} % {Macro added} % Add a poor man's bold construction to the list being built. % \begin{macrocode} \def\bm@pmb#1{% \bm@add{\bm@pmb@{#1}}} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@pmb@} % \changes{v0.10}{1997/01/04} % {Macro added} % |\pmb| variant. (See \TeX{}Book, or AMS \textsf{amsbsy} package). % This one takes a bit more care to use smaller offsets in subscripts. % \begin{macrocode} \def\bm@pmb@#1{{% \setbox\tw@\hbox{$\m@th\mkern.4mu$}% \mathchoice \bm@pmb@@\displaystyle\@empty{#1}% \bm@pmb@@\textstyle\@empty{#1}% \bm@pmb@@\scriptstyle\defaultscriptratio{#1}% \bm@pmb@@\scriptscriptstyle\defaultscriptscriptratio{#1}}} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@pmb@@} % \changes{v0.10}{1997/01/04} % {Macro added} % Helper macro. Box |#3| and set it three times in the style |#1|, % offset by an amount reduced by the ratio specified in |#2|. % \begin{macrocode} \def\bm@pmb@@#1#2#3{{% \setbox\z@\hbox{$\m@th#1#3$}% \dimen@#2\wd\tw@ \rlap{\copy\z@}% \kern\dimen@ \raise1.5\dimen@\rlap{\copy\z@}% \kern\dimen@ \box\z@}}% % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@class} % \changes{v0.10}{1997/01/04} % {Macro added} % Convert a numeric math class back to a math class command. % |\mathord| is omitted in class $0$ and $7$ to save space and so % things work out right in constructions such as |x^a| where % |x^\mathord{a}| would not work. % \begin{macrocode} \def\bm@class{% \ifcase\count@ \or \mathop\or \mathbin\or \mathrel\or \mathopen\or \mathclose\or \mathpunct\or \fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@add} % \changes{v0.07}{1996/12/14} % {macro added} % A version of |\g@addto@macro| that internally uses a |\begingroup| % rather than a brace group\footnote{This bug is fixed in the \LaTeX\ % kernel of 1996/12/01}, to save creating a mathord. % % As need to redefine it anyway, save some tokens by making % it specific to |\bm@command|, and to execute |\bm@expand| % to continue the loop. % \begin{macrocode} \def\bm@add#1{% \begingroup \toks@\expandafter{\bm@command#1}% \xdef\bm@command{\the\toks@}% \endgroup \bm@expand} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@xadd} % An |\xdef| version of |\bm@add|. % \begin{macrocode} \def\bm@xadd#1{% \begingroup \toks@\expandafter{\bm@command}% \xdef\bm@command{\the\toks@#1}% \endgroup \bm@expand} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@mathaccent} % \changes{v1.0e}{1997/11/21} % {Use bm on argument group, as spotted on c.t.t.} % |\mathaccent| version of |\bm@mathchar|. % \begin{macrocode} \def\bm@mathaccent{% \bm@changefam{}% % \end{macrocode} % The next four lines were added a v1.0e. Without them |\bm{\hat{A}}| % makes the accent bold using |\bm| but the group |{A}| is made bold % via a |\mathchoice| construction as for any other group, as |\bm| % does not attempt to parse inside brace groups. While that produces % something acceptable for lower case letters, it produces % $\bm{\hat{{A}}}$ which is not too good. The braces may simply be % omitted: % |\bm{\hat A}| would work, producing $\bm{\hat A}$, however I did not % want to document such a restriction, so now modify bm so that such % brace groups are handled gracefully. % % It would be possible to locally make mathaccents take an argument % during the bm look-ahead, so the brace groups would then vanish % during expansion, however I would then need to explitly skip past % \meta{filler} and also make sure that the end of parse token % was not gobbled in marginal cases like |$\bm\hat$|. % % So instead do the following which gets rid of \meta{filler} % with a redefinition of |\relax|, and just locally changes % |\bm@group| so that instead of doing a |\mathchoice| it simply adds % |\bgroup| and |\egroup| around the tokens, and lets bm modify the % tokens of the `argument'. This means that |\bm{\hat{A}}| now produces %\begin{verbatim} % \mathaccent 29790 \bgroup \mathchar 30017 \egroup %\end{verbatim} % The inner math list is a single mathchar, and so \TeX\ will not box % it, and the math accent will correctly position, taking into account % the skewchar information. % % As the normal bm lookahead is used, it is automatic that the parse % will end without trying to go past |\bm@end|. % % One disadvantage is that the group will mean that |\bm@previous| % will not be correctly updated. However that is only used for % delimiter checking, so can not matter here. % \begin{macrocode} \begingroup \def\bm@group##1{\endgroup\bm@xadd{\bgroup}##1\egroup}% \def\bm@test@token{\endgroup\bm@test@token}% \let\relax\@empty % \end{macrocode} % % \begin{macrocode} \bm@xadd{\mathaccent\the\count@\space}} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@delimiter} % \changes{v1.0d}{1997/11/15} % {Support \cs{left}. null delimiter.} % Change both families (math groups) of a delcode and then % use the modified code with |\delimiter|. Don't change code `0' % as that denotes a null delimiter. % \begin{macrocode} \def\bm@delimiter{% \ifnum\count@>\z@ \bm@changefam{}% \bm@changefam{000}% \fi \bm@xadd{\delimiter\the\count@\space}}% % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@radical} % Same for |\radical|. % \begin{macrocode} \def\bm@radical{% \bm@changefam{}% \bm@changefam{000}% \bm@xadd{\radical\the\count@\space}}% % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@mchar@} % Catcode 12 |\mathchar|, for |\ifx| tests. % \begin{macrocode} \edef\bm@mchar@{\meaning\mathchar} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@mchar@test} % Test if the |\meaning| starts with |\mathchar|. If it does, grab the % value into |\count@| and call |\bm@mathchar|, else just copy the % command into the accumulated tokens. % |#1|, |#2|, |#3| are all |\meaning| produced tokens, or `dummy tokens' % added at the time this is called. |#4| is the original token, in case % decide not to use the |\meaning|. % \begin{macrocode} \def\bm@mchar@test#1"#2"#3\@nil#4{% \xdef\meaning@{#1}% \ifx\meaning@\bm@mchar@ \count@"#2\relax \bm@mathchar \else % \end{macrocode} % Some other command: copy it straight over. If it is the first thing % added, and it is a |\relax| token, save it in |\bm@first| for use % in |\bm@define|. % \begin{macrocode} \ifx\bm@previous\@empty \ifx\relax#4% \gdef\bm@first{#4}% \fi \fi \bm@add{#4}% \fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@changefam} % \changes{v0.10}{1997/01/04} % {Rewrite for new \cs{bm@table} system} % Pull out one specified hex digit and passes % it to |\bm@modify| to change. argument is empty normally but |000| to % access the second math group in a delimiter code. % \begin{macrocode} \def\bm@changefam#1{% \@tempcnta\count@ \divide\@tempcnta"1000#1 % \multiply\@tempcnta"1000#1 % \advance\@tempcnta-\count@ \divide\@tempcnta-"100#1 % % \end{macrocode} % Having isolated the required math group (fam), look up % the offset in the current table. % \begin{macrocode} \@tempcnta\bm@table % \end{macrocode} % If the offset is $-1$, keep |\count@| unchanged, but set |\@tempa| % to use poor man's bold. Otherwise increment |\count@| to change the % math group specified. % \begin{macrocode} \ifnum\@tempcnta=\m@ne \let\@tempa\bm@pmb \else \multiply\@tempcnta"100#1 % \advance\count@\@tempcnta \fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\bm@prime} % \changes{v1.0d}{1997/11/15} % {Macro added} % Support |'|. Earlier versions did not make the prime bold in a'. % % |\bm{a''}| will now produce (with the normal encodings) %\begin{verbatim} % \mathchar 30049 % \bm@prime \mathchar 1584 \relax % \bm@prime \mathchar 1584 \relax %\end{verbatim} % So |\bm@prime| does essentially the same as the active definition of % |'|, which is to start a superscript group then keep adding |\prime| % for each |'| (or |\bm@prime|) following. Here modified to grab a % |\relax| delimited argument and use that instead of |\prime|. % |\bm@prime| is locally |\let| to |'| so the |\ifx| tests in |\pr@m@s| % don't need changing. % \begin{macrocode} \def\bm@prime{^\bgroup \let\bm@prime'% \def\prim@s##1\relax{##1\futurelet\@let@token\pr@m@s}% \prim@s} % \end{macrocode} % \end{macro} % % \begin{macro}{\boldsymbol} % \changes{v1.0b}{1997/04/14} % {Macro added} % \begin{macro}{\heavysymbol} % Finally, to ease conversion of documents between this package and % the \textsf{amsbsy} package: % \begin{macrocode} \let\boldsymbol\bm % \end{macrocode} % % \begin{macrocode} \let\heavysymbol\hm % \end{macrocode} % \end{macro} % \end{macro} % \begin{macrocode} % % \end{macrocode} % % \Finale %