#include #include "../port/lib.h" #include "mem.h" #include "dat.h" #include "fns.h" #include "../port/error.h" #include "../port/edf.h" #include "errstr.h" #include enum { Scaling=2, AMPmincores = 5, }; Ref noteidalloc; static Ref pidalloc; static Sched run; struct Procalloc procalloc; extern Proc* psalloc(void); extern void pshash(Proc*); extern void psrelease(Proc*); extern void psunhash(Proc*); static int reprioritize(Proc*); static void updatecpu(Proc*); static void rebalance(void); char *statename[] = { /* BUG: generate automatically */ "Dead", "Moribund", "Ready", "Scheding", "Running", "Queueing", "QueueingR", "QueueingW", "Wakeme", "Broken", "Stopped", "Rendez", "Waitrelease", "Exotic", "Down", }; Sched* procsched(Proc *) { return &run; } /* * bad planning, once more. */ void procinit0(void) { run.schedgain = 30; } /* * Always splhi()'ed. */ void schedinit(void) /* never returns */ { Edf *e; m->inidle = 1; m->proc = nil; ainc(&run.nmach); setlabel(&m->sched); if(up) { if((e = up->edf) && (e->flags & Admitted)) edfrecord(up); m->qstart = 0; m->qexpired = 0; coherence(); m->proc = 0; switch(up->state) { case Running: ready(up); break; case Moribund: up->state = Dead; stopac(); edfstop(up); if (up->edf) free(up->edf); up->edf = nil; /* * Holding locks from pexit: * procalloc * pga */ mmurelease(up); unlock(&pga); psrelease(up); unlock(&procalloc); break; } up->mach = nil; updatecpu(up); up = nil; } sched(); } /* * Check if the stack has more than 4*KiB free. * Do not call panic, the stack is gigantic. */ static void stackok(void) { char dummy; if(&dummy < (char*)up->kstack + 4*KiB){ print("tc kernel stack overflow, cpu%d stopped\n", m->machno); DONE(); } } /* * If changing this routine, look also at sleep(). It * contains a copy of the guts of sched(). */ void sched(void) { Proc *p; if(m->ilockdepth) panic("cpu%d: ilockdepth %d, last lock %#p at %#p, sched called from %#p", m->machno, m->ilockdepth, up? up->lastilock: nil, (up && up->lastilock)? up->lastilock->pc: 0, getcallerpc(&p+2)); if(up){ /* * Delay the sched until the process gives up the locks * it is holding. This avoids dumb lock loops. * Don't delay if the process is Moribund. * It called sched to die. * But do sched eventually. This avoids a missing unlock * from hanging the entire kernel. * But don't reschedule procs holding palloc or procalloc. * Those are far too important to be holding while asleep. * * This test is not exact. There can still be a few * instructions in the middle of taslock when a process * holds a lock but Lock.p has not yet been initialized. */ if(up->nlocks) if(up->state != Moribund) if(up->delaysched < 20 || pga.Lock.p == up || procalloc.Lock.p == up){ up->delaysched++; run.delayedscheds++; return; } up->delaysched = 0; splhi(); /* statistics */ if(up->nqtrap == 0 && up->nqsyscall == 0) up->nfullq++; m->cs++; stackok(); procsave(up); mmuflushtlb(m->pml4->pa); if(setlabel(&up->sched)){ procrestore(up); spllo(); return; } gotolabel(&m->sched); } m->inidle = 1; p = runproc(); /* core 0 never returns */ m->inidle = 0; if(!p->edf){ updatecpu(p); p->priority = reprioritize(p); } up = p; m->qstart = m->ticks; up->nqtrap = 0; up->nqsyscall = 0; up->state = Running; up->mach = m; m->proc = up; mmuswitch(up); assert(!up->wired || up->wired == m); gotolabel(&up->sched); } int anyready(void) { return run.runvec; } int anyhigher(void) { return run.runvec & ~((1<<(up->priority+1))-1); } /* * here once per clock tick to see if we should resched */ void hzsched(void) { /* once a second, rebalance will reprioritize ready procs */ if(m->machno == 0){ rebalance(); return; } /* with <= 4 cores, we use SMP and core 0 does not set qexpired for us */ if(sys->nmach <= AMPmincores) if(m->ticks - m->qstart >= HZ/10) m->qexpired = 1; /* unless preempted, get to run */ if(m->qexpired && anyready()) up->delaysched++; } /* * here at the end of non-clock interrupts to see if we should preempt the * current process. Returns 1 if preempted, 0 otherwise. */ int preempted(void) { if(up && up->state == Running) if(up->preempted == 0) if(anyhigher()) if(!active.exiting){ /* Core 0 is dispatching all interrupts, so no core * actually running a user process is ever going call preempted, unless * we consider IPIs for preemption or we distribute interrupts. * But we are going to use SMP for machines with few cores. panic("preemted used"); */ up->preempted = 1; sched(); splhi(); up->preempted = 0; return 1; } return 0; } /* * Update the cpu time average for this particular process, * which is about to change from up -> not up or vice versa. * p->lastupdate is the last time an updatecpu happened. * * The cpu time average is a decaying average that lasts * about D clock ticks. D is chosen to be approximately * the cpu time of a cpu-intensive "quick job". A job has to run * for approximately D clock ticks before we home in on its * actual cpu usage. Thus if you manage to get in and get out * quickly, you won't be penalized during your burst. Once you * start using your share of the cpu for more than about D * clock ticks though, your p->cpu hits 1000 (1.0) and you end up * below all the other quick jobs. Interactive tasks, because * they basically always use less than their fair share of cpu, * will be rewarded. * * If the process has not been running, then we want to * apply the filter * * cpu = cpu * (D-1)/D * * n times, yielding * * cpu = cpu * ((D-1)/D)^n * * but D is big enough that this is approximately * * cpu = cpu * (D-n)/D * * so we use that instead. * * If the process has been running, we apply the filter to * 1 - cpu, yielding a similar equation. Note that cpu is * stored in fixed point (* 1000). * * Updatecpu must be called before changing up, in order * to maintain accurate cpu usage statistics. It can be called * at any time to bring the stats for a given proc up-to-date. */ static void updatecpu(Proc *p) { int D, n, t, ocpu; if(p->edf) return; t = sys->ticks*Scaling + Scaling/2; n = t - p->lastupdate; p->lastupdate = t; if(n == 0) return; D = run.schedgain*HZ*Scaling; if(n > D) n = D; ocpu = p->cpu; if(p != up) p->cpu = (ocpu*(D-n))/D; else{ t = 1000 - ocpu; t = (t*(D-n))/D; p->cpu = 1000 - t; } //iprint("pid %d %s for %d cpu %d -> %d\n", p->pid,p==up?"active":"inactive",n, ocpu,p->cpu); } /* * On average, p has used p->cpu of a cpu recently. * Its fair share is nmach/m->load of a cpu. If it has been getting * too much, penalize it. If it has been getting not enough, reward it. * I don't think you can get much more than your fair share that * often, so most of the queues are for using less. Having a priority * of 3 means you're just right. Having a higher priority (up to p->basepri) * means you're not using as much as you could. */ static int reprioritize(Proc *p) { int fairshare, n, load, ratio; load = sys->load; if(load == 0) return p->basepri; /* * fairshare = 1.000 * conf.nproc * 1.000/load, * except the decimal point is moved three places * on both load and fairshare. */ fairshare = (sys->nmach*1000*1000)/load; n = p->cpu; if(n == 0) n = 1; ratio = (fairshare+n/2) / n; if(ratio > p->basepri) ratio = p->basepri; if(ratio < 0) panic("reprioritize"); //iprint("pid %d cpu %d load %d fair %d pri %d\n", p->pid, p->cpu, load, fairshare, ratio); return ratio; } /* * add a process to a scheduling queue */ static void queueproc(Sched *sch, Schedq *rq, Proc *p, int locked) { int pri; pri = rq - sch->runq; if(!locked) lock(sch); else if(canlock(sch)) panic("queueproc: locked and can lock"); p->priority = pri; p->rnext = 0; if(rq->tail) rq->tail->rnext = p; else rq->head = p; rq->tail = p; rq->n++; sch->nrdy++; sch->runvec |= 1<head; p; p = p->rnext){ if(p == tp) break; l = p; } /* * p->mach==0 only when process state is saved */ if(p == 0 || p->mach){ unlock(sch); return nil; } if(p->rnext == 0) rq->tail = l; if(l) l->rnext = p->rnext; else rq->head = p->rnext; if(rq->head == nil) sch->runvec &= ~(1<<(rq-sch->runq)); rq->n--; sch->nrdy--; if(p->state != Ready) print("dequeueproc %s %d %s\n", p->text, p->pid, statename[p->state]); unlock(sch); return p; } static void schedready(Sched *sch, Proc *p, int locked) { Mpl pl; int pri; Schedq *rq; pl = splhi(); if(edfready(p)){ splx(pl); return; } updatecpu(p); pri = reprioritize(p); p->priority = pri; rq = &sch->runq[pri]; p->state = Ready; queueproc(sch, rq, p, locked); if(p->trace) proctrace(p, SReady, 0); splx(pl); } /* * ready(p) picks a new priority for a process and sticks it in the * runq for that priority. */ void ready(Proc *p) { schedready(procsched(p), p, 0); } /* * yield the processor and drop our priority */ void yield(void) { if(anyready()){ /* pretend we just used 1/2 tick */ up->lastupdate -= Scaling/2; sched(); } } /* * recalculate priorities once a second. We need to do this * since priorities will otherwise only be recalculated when * the running process blocks. */ static void rebalance(void) { Mpl pl; int pri, npri, t; Schedq *rq; Proc *p; t = m->ticks; if(t - run.balancetime < HZ) return; run.balancetime = t; for(pri=0, rq=run.runq; prihead; if(p == nil) continue; if(p->mp != m) continue; if(pri == p->basepri) continue; updatecpu(p); npri = reprioritize(p); if(npri != pri){ pl = splhi(); p = dequeueproc(&run, rq, p); if(p) queueproc(&run, &run.runq[npri], p, 0); splx(pl); goto another; } } } /* * Process p is ready to run, but there's no available core. * Try to make a core available by * 1. preempting a process with lower priority, or * 2. preempting one with the same priority that had more than HZ/10, or * 3. rescheduling one that run more than HZ, in the hope he gets his priority lowered. */ static void preemptfor(Proc *p) { ulong delta; uint i, j, rr; Proc *mup; Mach *mp; assert(m->machno == 0); /* * try to preempt a lower priority process first, default back to * round robin otherwise. */ for(rr = 0; rr < 2; rr++) for(i = 0; i < MACHMAX; i++){ j = pickcore(p->color, i); if((mp = sys->machptr[j]) != nil && mp->online && mp->nixtype == NIXTC){ if(mp == m) continue; /* * Caution here: mp->proc can change, even die. */ mup = mp->proc; if(mup == nil) /* one got idle */ return; delta = mp->ticks - mp->qstart; if(mup->priority < p->priority){ mp->qexpired = 1; return; } if(rr && mup->priority == p->priority && delta > HZ/10){ mp->qexpired = 1; return; } if(rr & delta > HZ){ mp->qexpired = 1; return; } } } } /* * Scheduling thread run as the main loop of cpu 0 * Used in AMP sched. */ static void mach0sched(void) { Schedq *rq; Proc *p; Mach *mp; ulong start, now; int n, i, j; assert(m->machno == 0); acmodeset(NIXKC); /* we don't time share any more */ n = 0; start = perfticks(); loop: /* * find a ready process that we might run. */ spllo(); for(rq = &run.runq[Nrq-1]; rq >= run.runq; rq--) for(p = rq->head; p; p = p->rnext){ /* * wired processes may only run when their core is available. */ if(p->wired != nil){ if(p->wired->proc == nil) goto found; continue; } /* * find a ready process that did run at an available core * or one that has not moved for some time. */ if(p->mp == nil || p->mp->proc == nil || n>0) goto found; } /* waste time or halt the CPU */ idlehands(); /* remember how much time we're here */ now = perfticks(); m->perf.inidle += now-start; start = now; n++; goto loop; found: assert(m->machno == 0); splhi(); /* * find a core for this process, but honor wiring. */ mp = p->wired; if(mp != nil){ if(mp->proc != nil) goto loop; }else{ for(i = 0; i < MACHMAX; i++){ j = pickcore(p->color, i); if((mp = sys->machptr[j]) != nil && mp->online && mp->nixtype == NIXTC) if(mp != m && mp->proc == nil) break; } if(i == MACHMAX){ preemptfor(p); goto loop; } } p = dequeueproc(&run, rq, p); mp->proc = p; if(p != nil){ p->state = Scheding; p->mp = mp; } n = 0; goto loop; } /* * SMP performs better than AMP with few cores. * So, leave this here by now. We should probably * write a unified version of runproc good enough for * both SMP and AMP. */ static Proc* smprunproc(void) { Schedq *rq; Proc *p; ulong start, now; int i; start = perfticks(); run.preempts++; loop: /* * find a process that last ran on this processor (affinity), * or one that hasn't moved in a while (load balancing). Every * time around the loop affinity goes down. */ spllo(); for(i = 0;; i++){ /* * find the highest priority target process that this * processor can run given affinity constraints. * */ for(rq = &run.runq[Nrq-1]; rq >= run.runq; rq--){ for(p = rq->head; p; p = p->rnext){ if(p->mp == nil || p->mp == sys->machptr[m->machno] || (!p->wired && i > 0)) goto found; } } /* waste time or halt the CPU */ idlehands(); /* remember how much time we're here */ now = perfticks(); m->perf.inidle += now-start; start = now; } found: splhi(); p = dequeueproc(&run, rq, p); if(p == nil) goto loop; p->state = Scheding; p->mp = sys->machptr[m->machno]; if(edflock(p)){ edfrun(p, rq == &run.runq[PriEdf]); /* start deadline timer and do admin */ edfunlock(); } if(p->trace) proctrace(p, SRun, 0); return p; } /* * pick a process to run. * most of this is used in AMP sched. * (on a quad core or less, we use SMP). * In the case of core 0 we always return nil, but * schedule the picked process at any other available TC. * In the case of other cores we wait until a process is given * by core 0. */ Proc* runproc(void) { Schedq *rq; Proc *p; ulong start, now; if(sys->nmach <= AMPmincores) return smprunproc(); start = perfticks(); run.preempts++; rq = nil; if(m->machno != 0){ do{ spllo(); while(m->proc == nil) idlehands(); now = perfticks(); m->perf.inidle += now-start; start = now; splhi(); p = m->proc; }while(p == nil); p->state = Scheding; p->mp = sys->machptr[m->machno]; if(edflock(p)){ edfrun(p, rq == &run.runq[PriEdf]); /* start deadline timer and do admin */ edfunlock(); } if(p->trace) proctrace(p, SRun, 0); return p; } mach0sched(); return nil; /* not reached */ } int canpage(Proc *p) { int ok; Sched *sch; splhi(); sch = procsched(p); lock(sch); /* Only reliable way to see if we are Running */ if(p->mach == 0) { p->newtlb = 1; ok = 1; } else ok = 0; unlock(sch); spllo(); return ok; } Proc* newproc(void) { Proc *p; p = psalloc(); p->state = Scheding; p->psstate = "New"; p->mach = 0; p->qnext = 0; p->nchild = 0; p->nwait = 0; p->waitq = 0; p->parent = 0; p->pgrp = 0; p->egrp = 0; p->fgrp = 0; p->rgrp = 0; p->pdbg = 0; p->kp = 0; if(up != nil && up->procctl == Proc_tracesyscall) p->procctl = Proc_tracesyscall; else p->procctl = 0; p->syscalltrace = nil; p->notepending = 0; p->ureg = 0; p->privatemem = 0; p->noswap = 0; p->errstr = p->errbuf0; p->syserrstr = p->errbuf1; p->errbuf0[0] = '\0'; p->errbuf1[0] = '\0'; p->nlocks = 0; p->delaysched = 0; p->trace = 0; kstrdup(&p->user, "*nouser"); kstrdup(&p->text, "*notext"); kstrdup(&p->args, ""); p->nargs = 0; p->setargs = 0; memset(p->seg, 0, sizeof p->seg); p->pid = incref(&pidalloc); pshash(p); p->noteid = incref(¬eidalloc); if(p->pid <= 0 || p->noteid <= 0) panic("pidalloc"); if(p->kstack == 0) p->kstack = smalloc(KSTACK); /* sched params */ p->mp = 0; p->wired = 0; procpriority(p, PriNormal, 0); p->cpu = 0; p->lastupdate = sys->ticks*Scaling; p->edf = nil; p->ntrap = 0; p->nintr = 0; p->nsyscall = 0; p->nactrap = 0; p->nacsyscall = 0; p->nicc = 0; p->actime = 0ULL; p->tctime = 0ULL; p->ac = nil; p->nfullq = 0; memset(&p->PMMU, 0, sizeof p->PMMU); return p; } /* * wire this proc to a machine */ void procwired(Proc *p, int bm) { Proc *pp; int i; char nwired[MACHMAX]; Mach *wm; if(bm < 0){ /* pick a machine to wire to */ memset(nwired, 0, sizeof(nwired)); p->wired = 0; for(i=0; (pp = psincref(i)) != nil; i++){ wm = pp->wired; if(wm && pp->pid) nwired[wm->machno]++; psdecref(pp); } bm = 0; for(i=0; inmach; i++) if(nwired[i] < nwired[bm]) bm = i; } else { /* use the virtual machine requested */ bm = bm % sys->nmach; } p->wired = sys->machptr[bm]; p->mp = p->wired; /* * adjust our color to the new domain. */ if(up == nil || p != up) return; up->color = corecolor(up->mp->machno); qlock(&up->seglock); for(i = 0; i < NSEG; i++) if(up->seg[i]) up->seg[i]->color = up->color; qunlock(&up->seglock); } void procpriority(Proc *p, int pri, int fixed) { if(pri >= Npriq) pri = Npriq - 1; else if(pri < 0) pri = 0; p->basepri = pri; p->priority = pri; if(fixed){ p->fixedpri = 1; } else { p->fixedpri = 0; } } /* * sleep if a condition is not true. Another process will * awaken us after it sets the condition. When we awaken * the condition may no longer be true. * * we lock both the process and the rendezvous to keep r->p * and p->r synchronized. */ void sleep(Rendez *r, int (*f)(void*), void *arg) { Mpl pl; pl = splhi(); if(up->nlocks) print("process %d sleeps with %d locks held, last lock %#p locked at pc %#p, sleep called from %#p\n", up->pid, up->nlocks, up->lastlock, up->lastlock->pc, getcallerpc(&r)); lock(r); lock(&up->rlock); if(r->p){ print("double sleep called from %#p, %d %d\n", getcallerpc(&r), r->p->pid, up->pid); dumpstack(); } /* * Wakeup only knows there may be something to do by testing * r->p in order to get something to lock on. * Flush that information out to memory in case the sleep is * committed. */ r->p = up; if((*f)(arg) || up->notepending){ /* * if condition happened or a note is pending * never mind */ r->p = nil; unlock(&up->rlock); unlock(r); } else { /* * now we are committed to * change state and call scheduler */ if(up->trace) proctrace(up, SSleep, 0); up->state = Wakeme; up->r = r; /* statistics */ m->cs++; procsave(up); mmuflushtlb(m->pml4->pa); if(setlabel(&up->sched)) { /* * here when the process is awakened */ procrestore(up); spllo(); } else { /* * here to go to sleep (i.e. stop Running) */ unlock(&up->rlock); unlock(r); gotolabel(&m->sched); } } if(up->notepending) { up->notepending = 0; splx(pl); if(up->procctl == Proc_exitme && up->closingfgrp) forceclosefgrp(); error(Eintr); } splx(pl); } static int tfn(void *arg) { return up->trend == nil || up->tfn(arg); } void twakeup(Ureg*, Timer *t) { Proc *p; Rendez *trend; p = t->ta; trend = p->trend; p->trend = 0; if(trend) wakeup(trend); } void tsleep(Rendez *r, int (*fn)(void*), void *arg, long ms) { if (up->tt){ print("tsleep: timer active: mode %d, tf %#p\n", up->tmode, up->tf); timerdel(up); } up->tns = MS2NS(ms); up->tf = twakeup; up->tmode = Trelative; up->ta = up; up->trend = r; up->tfn = fn; timeradd(up); if(waserror()){ timerdel(up); nexterror(); } sleep(r, tfn, arg); if (up->tt) timerdel(up); up->twhen = 0; poperror(); } /* * Expects that only one process can call wakeup for any given Rendez. * We hold both locks to ensure that r->p and p->r remain consistent. * Richard Miller has a better solution that doesn't require both to * be held simultaneously, but I'm a paranoid - presotto. */ Proc* wakeup(Rendez *r) { Mpl pl; Proc *p; pl = splhi(); lock(r); p = r->p; if(p != nil){ lock(&p->rlock); if(p->state != Wakeme || p->r != r) panic("wakeup: state"); r->p = nil; p->r = nil; ready(p); unlock(&p->rlock); } unlock(r); splx(pl); return p; } /* * if waking a sleeping process, this routine must hold both * p->rlock and r->lock. However, it can't know them in * the same order as wakeup causing a possible lock ordering * deadlock. We break the deadlock by giving up the p->rlock * lock if we can't get the r->lock and retrying. */ int postnote(Proc *p, int dolock, char *n, int flag) { Mpl pl; int ret; Rendez *r; Proc *d, **l; if(dolock) qlock(&p->debug); if(flag != NUser && (p->notify == 0 || p->notified)) p->nnote = 0; ret = 0; if(p->nnote < NNOTE) { strcpy(p->note[p->nnote].msg, n); p->note[p->nnote++].flag = flag; ret = 1; } p->notepending = 1; /* NIX */ if(p->state == Exotic){ /* it could be that the process is not running * in the AC when we interrupt the AC, but then * we'd only get an extra interrupt in the AC, and * nothing should happen. */ intrac(p); } if(dolock) qunlock(&p->debug); /* this loop is to avoid lock ordering problems. */ for(;;){ pl = splhi(); lock(&p->rlock); r = p->r; /* waiting for a wakeup? */ if(r == nil) break; /* no */ /* try for the second lock */ if(canlock(r)){ if(p->state != Wakeme || r->p != p) panic("postnote: state %d %d %d", r->p != p, p->r != r, p->state); p->r = nil; r->p = nil; ready(p); unlock(r); break; } /* give other process time to get out of critical section and try again */ unlock(&p->rlock); splx(pl); sched(); } unlock(&p->rlock); splx(pl); if(p->state != Rendezvous){ if(p->state == Semdown) ready(p); return ret; } /* Try and pull out of a rendezvous */ lock(p->rgrp); if(p->state == Rendezvous) { p->rendval = ~0; l = &REND(p->rgrp, p->rendtag); for(d = *l; d; d = d->rendhash) { if(d == p) { *l = p->rendhash; break; } l = &d->rendhash; } ready(p); } unlock(p->rgrp); return ret; } /* * weird thing: keep at most NBROKEN around */ #define NBROKEN 4 struct { QLock; int n; Proc *p[NBROKEN]; }broken; void addbroken(Proc *p) { qlock(&broken); if(broken.n == NBROKEN) { ready(broken.p[0]); memmove(&broken.p[0], &broken.p[1], sizeof(Proc*)*(NBROKEN-1)); --broken.n; } broken.p[broken.n++] = p; qunlock(&broken); stopac(); edfstop(up); p->state = Broken; p->psstate = 0; sched(); } void unbreak(Proc *p) { int b; qlock(&broken); for(b=0; b < broken.n; b++) if(broken.p[b] == p) { broken.n--; memmove(&broken.p[b], &broken.p[b+1], sizeof(Proc*)*(NBROKEN-(b+1))); ready(p); break; } qunlock(&broken); } int freebroken(void) { int i, n; qlock(&broken); n = broken.n; for(i=0; infullq > 0) iprint(" %s=%d", up->text, up->nfullq); if(0 && up->nicc > 0) iprint(" [%s nicc %ud tctime %ulld actime %ulld]\n", up->text, up->nicc, up->tctime, up->actime); if(up->syscalltrace != nil) free(up->syscalltrace); up->syscalltrace = nil; up->alarm = 0; if (up->tt) timerdel(up); if(up->trace) proctrace(up, SDead, 0); /* nil out all the resources under lock (free later) */ qlock(&up->debug); fgrp = up->fgrp; up->fgrp = nil; egrp = up->egrp; up->egrp = nil; rgrp = up->rgrp; up->rgrp = nil; pgrp = up->pgrp; up->pgrp = nil; dot = up->dot; up->dot = nil; qunlock(&up->debug); if(fgrp) closefgrp(fgrp); if(egrp) closeegrp(egrp); if(rgrp) closergrp(rgrp); if(dot) cclose(dot); if(pgrp) closepgrp(pgrp); /* * if not a kernel process and have a parent, * do some housekeeping. */ if(up->kp == 0) { p = up->parent; if(p == 0) { if(exitstr == 0) exitstr = "unknown"; panic("boot process died: %s", exitstr); } while(waserror()) ; wq = smalloc(sizeof(Waitq)); poperror(); wq->w.pid = up->pid; utime = up->time[TUser] + up->time[TCUser]; stime = up->time[TSys] + up->time[TCSys]; wq->w.time[TUser] = tk2ms(utime); wq->w.time[TSys] = tk2ms(stime); wq->w.time[TReal] = tk2ms(sys->ticks - up->time[TReal]); if(exitstr && exitstr[0]) snprint(wq->w.msg, sizeof(wq->w.msg), "%s %d: %s", up->text, up->pid, exitstr); else wq->w.msg[0] = '\0'; lock(&p->exl); /* * Check that parent is still alive. */ if(p->pid == up->parentpid && p->state != Broken) { p->nchild--; p->time[TCUser] += utime; p->time[TCSys] += stime; /* * If there would be more than 128 wait records * processes for my parent, then don't leave a wait * record behind. This helps prevent badly written * daemon processes from accumulating lots of wait * records. */ if(p->nwait < 128) { wq->next = p->waitq; p->waitq = wq; p->nwait++; wq = nil; wakeup(&p->waitr); } } unlock(&p->exl); if(wq) free(wq); } if(!freemem) addbroken(up); qlock(&up->seglock); es = &up->seg[NSEG]; for(s = up->seg; s < es; s++) { if(*s) { putseg(*s); *s = 0; } } qunlock(&up->seglock); lock(&up->exl); /* Prevent my children from leaving waits */ psunhash(up); up->pid = 0; wakeup(&up->waitr); unlock(&up->exl); for(f = up->waitq; f; f = next) { next = f->next; free(f); } /* release debuggers */ qlock(&up->debug); if(up->pdbg) { wakeup(&up->pdbg->sleep); up->pdbg = 0; } qunlock(&up->debug); /* Sched must not loop for these locks */ lock(&procalloc); lock(&pga); stopac(); edfstop(up); up->state = Moribund; sched(); panic("pexit"); } int haswaitq(void *x) { Proc *p; p = (Proc *)x; return p->waitq != 0; } int pwait(Waitmsg *w) { int cpid; Waitq *wq; if(!canqlock(&up->qwaitr)) error(Einuse); if(waserror()) { qunlock(&up->qwaitr); nexterror(); } lock(&up->exl); if(up->nchild == 0 && up->waitq == 0) { unlock(&up->exl); error(Enochild); } unlock(&up->exl); sleep(&up->waitr, haswaitq, up); lock(&up->exl); wq = up->waitq; up->waitq = wq->next; up->nwait--; unlock(&up->exl); qunlock(&up->qwaitr); poperror(); if(w) memmove(w, &wq->w, sizeof(Waitmsg)); cpid = wq->w.pid; free(wq); return cpid; } void dumpaproc(Proc *p) { uintptr bss; char *s; if(p == 0) return; bss = 0; if(p->seg[HSEG]) bss = p->seg[HSEG]->top; else if(p->seg[BSEG]) bss = p->seg[BSEG]->top; s = p->psstate; if(s == 0) s = statename[p->state]; print("%3d:%10s pc %#p dbgpc %#p %8s (%s) ut %ld st %ld bss %#p qpc %#p nl %d nd %lud lpc %#p pri %lud\n", p->pid, p->text, p->pc, dbgpc(p), s, statename[p->state], p->time[0], p->time[1], bss, p->qpc, p->nlocks, p->delaysched, p->lastlock ? p->lastlock->pc : 0, p->priority); } void procdump(void) { int i; Proc *p; if(up) print("up %d\n", up->pid); else print("no current process\n"); for(i=0; (p = psincref(i)) != nil; i++) { if(p->state != Dead) dumpaproc(p); psdecref(p); } } /* * wait till all processes have flushed their mmu * state about segement s */ void procflushseg(Segment *s) { int i, ns, nm, nwait; Proc *p; Mach *mp; /* * tell all processes with this * segment to flush their mmu's */ nwait = 0; for(i=0; (p = psincref(i)) != nil; i++) { if(p->state == Dead){ psdecref(p); continue; } for(ns = 0; ns < NSEG; ns++){ if(p->seg[ns] == s){ p->newtlb = 1; for(nm = 0; nm < MACHMAX; nm++) if((mp = sys->machptr[nm]) != nil && mp->online) if(mp->proc == p){ mp->mmuflush = 1; nwait++; } break; } } psdecref(p); } if(nwait == 0) return; /* * wait for all processors to take a clock interrupt * and flush their mmu's. * NIX BUG: this won't work if another core is in AC mode. * In that case we must IPI it, but only if that core is * using this segment. */ for(i = 0; i < MACHMAX; i++) if((mp = sys->machptr[i]) != nil && mp->online) if(mp != m) while(mp->mmuflush) sched(); } void scheddump(void) { Proc *p; Schedq *rq; for(rq = &run.runq[Nrq-1]; rq >= run.runq; rq--){ if(rq->head == 0) continue; print("run[%ld]:", rq-run.runq); for(p = rq->head; p; p = p->rnext) print(" %d(%lud)", p->pid, m->ticks - p->readytime); print("\n"); delay(150); } print("nrdy %d\n", run.nrdy); } void kproc(char *name, void (*func)(void *), void *arg) { Proc *p; static Pgrp *kpgrp; p = newproc(); p->psstate = 0; p->procmode = 0640; p->kp = 1; p->noswap = 1; p->scallnr = up->scallnr; memmove(p->arg, up->arg, sizeof(up->arg)); p->nerrlab = 0; p->slash = up->slash; p->dot = up->dot; if(p->dot) incref(p->dot); memmove(p->note, up->note, sizeof(p->note)); p->nnote = up->nnote; p->notified = 0; p->lastnote = up->lastnote; p->notify = up->notify; p->ureg = 0; p->dbgreg = 0; procpriority(p, PriKproc, 0); kprocchild(p, func, arg); kstrdup(&p->user, eve); kstrdup(&p->text, name); if(kpgrp == 0) kpgrp = newpgrp(); p->pgrp = kpgrp; incref(kpgrp); memset(p->time, 0, sizeof(p->time)); p->time[TReal] = sys->ticks; ready(p); /* * since the bss/data segments are now shareable, * any mmu info about this process is now stale * and has to be discarded. */ p->newtlb = 1; mmuflush(); } /* * called splhi() by notify(). See comment in notify for the * reasoning. */ void procctl(Proc *p) { Mpl pl; char *state; switch(p->procctl) { case Proc_exitbig: spllo(); pexit("Killed: Insufficient physical memory", 1); case Proc_exitme: spllo(); /* pexit has locks in it */ pexit("Killed", 1); case Proc_traceme: if(p->nnote == 0) return; /* No break */ case Proc_stopme: p->procctl = 0; state = p->psstate; p->psstate = "Stopped"; /* free a waiting debugger */ pl = spllo(); qlock(&p->debug); if(p->pdbg) { wakeup(&p->pdbg->sleep); p->pdbg = 0; } qunlock(&p->debug); splhi(); p->state = Stopped; sched(); p->psstate = state; splx(pl); return; case Proc_toac: p->procctl = 0; /* * This pretends to return from the system call, * by moving to a core, but never returns (unless * the process gets moved back to a TC.) */ spllo(); runacore(); return; case Proc_totc: p->procctl = 0; if(p != up) panic("procctl: stopac: p != up"); spllo(); stopac(); return; } } void error(char *err) { spllo(); assert(up->nerrlab < NERR); kstrcpy(up->errstr, err, ERRMAX); setlabel(&up->errlab[NERR-1]); nexterror(); } void nexterror(void) { gotolabel(&up->errlab[--up->nerrlab]); } void exhausted(char *resource) { char buf[ERRMAX]; sprint(buf, "no free %s", resource); iprint("%s\n", buf); error(buf); } void killbig(char *why) { int i, x; Segment *s; ulong l, max; Proc *p, *kp; max = 0; kp = nil; for(x = 0; (p = psincref(x)) != nil; x++) { if(p->state == Dead || p->kp){ psdecref(p); continue; } l = 0; for(i=1; iseg[i]; if(s != 0) l += s->top - s->base; } if(l > max && ((p->procmode&0222) || strcmp(eve, p->user)!=0)) { if(kp != nil) psdecref(kp); kp = p; max = l; } else psdecref(p); } if(kp == nil) return; print("%d: %s killed: %s\n", kp->pid, kp->text, why); for(x = 0; (p = psincref(x)) != nil; x++) { if(p->state == Dead || p->kp){ psdecref(p); continue; } if(p != kp && p->seg[BSEG] && p->seg[BSEG] == kp->seg[BSEG]) p->procctl = Proc_exitbig; psdecref(p); } kp->procctl = Proc_exitbig; for(i = 0; i < NSEG; i++) { s = kp->seg[i]; if(s != 0 && canqlock(&s->lk)) { mfreeseg(s, s->base, (s->top - s->base)/BIGPGSZ); qunlock(&s->lk); } } psdecref(kp); } /* * change ownership to 'new' of all processes owned by 'old'. Used when * eve changes. */ void renameuser(char *old, char *new) { int i; Proc *p; for(i = 0; (p = psincref(i)) != nil; i++){ if(p->user!=nil && strcmp(old, p->user)==0) kstrdup(&p->user, new); psdecref(p); } } /* * time accounting called by clock() splhi'd * only cpu1 computes system load average * but the system load average is accounted for cpu0. */ void accounttime(void) { Proc *p; ulong n, per; p = m->proc; if(p) { if(m->machno == 1) run.nrun++; p->time[p->insyscall]++; } /* calculate decaying duty cycles */ n = perfticks(); per = n - m->perf.last; m->perf.last = n; per = (m->perf.period*(HZ-1) + per)/HZ; if(per != 0) m->perf.period = per; m->perf.avg_inidle = (m->perf.avg_inidle*(HZ-1)+m->perf.inidle)/HZ; m->perf.inidle = 0; m->perf.avg_inintr = (m->perf.avg_inintr*(HZ-1)+m->perf.inintr)/HZ; m->perf.inintr = 0; /* only one processor gets to compute system load averages. * it has to be mach 1 when we use AMP. */ if(sys->nmach > 1 && m->machno != 1) return; /* * calculate decaying load average. * if we decay by (n-1)/n then it takes * n clock ticks to go from load L to .36 L once * things quiet down. it takes about 5 n clock * ticks to go to zero. so using HZ means this is * approximately the load over the last second, * with a tail lasting about 5 seconds. */ n = run.nrun; run.nrun = 0; n = (run.nrdy+n)*1000; sys->load = (sys->load*(HZ-1)+n)/HZ; } void halt(void) { if(run.nrdy != 0) return; hardhalt(); }