/* Copyright (C) 1995, 2000 Aladdin Enterprises. All rights reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. For more information about licensing, please refer to http://www.ghostscript.com/licensing/. For information on commercial licensing, go to http://www.artifex.com/licensing/ or contact Artifex Software, Inc., 101 Lucas Valley Road #110, San Rafael, CA 94903, U.S.A., +1(415)492-9861. */ /* $Id: gxctable.c,v 1.5 2002/02/21 22:24:53 giles Exp $ */ /* Color table lookup and interpolation */ #include "gx.h" #include "gxfixed.h" #include "gxfrac.h" #include "gxctable.h" /* See gxctable.h for the API and structure definitions. */ /* * Define an implementation that simply picks the nearest value without * any interpolation. */ void gx_color_interpolate_nearest(const fixed * pi, const gx_color_lookup_table * pclt, frac * pv) { const int *pdim = pclt->dims; int m = pclt->m; const gs_const_string *table = pclt->table; if (pclt->n > 3) { table += fixed2int_var_rounded(pi[0]) * pdim[1]; ++pi, ++pdim; } { int ic = fixed2int_var_rounded(pi[2]); int ib = fixed2int_var_rounded(pi[1]); int ia = fixed2int_var_rounded(pi[0]); const byte *p = pclt->table[ia].data + (ib * pdim[2] + ic) * m; int j; for (j = 0; j < m; ++j, ++p) pv[j] = byte2frac(*p); } } /* * Define an implementation that uses trilinear interpolation. */ private void interpolate_accum(const fixed * pi, const gx_color_lookup_table * pclt, frac * pv, fixed factor) { const int *pdim = pclt->dims; int m = pclt->m; if (pclt->n > 3) { /* Do two 3-D interpolations, interpolating between them. */ gx_color_lookup_table clt3; int ix = fixed2int_var(pi[0]); fixed fx = fixed_fraction(pi[0]); clt3.n = 3; clt3.dims[0] = pdim[1]; /* needed only for range checking */ clt3.dims[1] = pdim[2]; clt3.dims[2] = pdim[3]; clt3.m = m; clt3.table = pclt->table + ix * pdim[1]; interpolate_accum(pi + 1, &clt3, pv, fixed_1); if (ix == pdim[0] - 1) return; clt3.table += pdim[1]; interpolate_accum(pi + 1, &clt3, pv, fx); } else { int ic = fixed2int_var(pi[2]); fixed fc = fixed_fraction(pi[2]); uint dc1 = (ic == pdim[2] - 1 ? 0 : m); int ib = fixed2int_var(pi[1]); fixed fb = fixed_fraction(pi[1]); uint db1 = (ib == pdim[1] - 1 ? 0 : pdim[2] * m); uint dbc = (ib * pdim[2] + ic) * m; uint dbc1 = db1 + dc1; int ia = fixed2int_var(pi[0]); fixed fa = fixed_fraction(pi[0]); const byte *pa0 = pclt->table[ia].data + dbc; const byte *pa1 = (ia == pdim[0] - 1 ? pa0 : pclt->table[ia + 1].data + dbc); int j; /* The values to be interpolated are */ /* pa{0,1}[{0,db1,dc1,dbc1}]. */ for (j = 0; j < m; ++j, ++pa0, ++pa1) { frac v000 = byte2frac(pa0[0]); frac v001 = byte2frac(pa0[dc1]); frac v010 = byte2frac(pa0[db1]); frac v011 = byte2frac(pa0[dbc1]); frac v100 = byte2frac(pa1[0]); frac v101 = byte2frac(pa1[dc1]); frac v110 = byte2frac(pa1[db1]); frac v111 = byte2frac(pa1[dbc1]); frac rv; frac v00 = v000 + (frac) arith_rshift((long)fc * (v001 - v000), _fixed_shift); frac v01 = v010 + (frac) arith_rshift((long)fc * (v011 - v010), _fixed_shift); frac v10 = v100 + (frac) arith_rshift((long)fc * (v101 - v100), _fixed_shift); frac v11 = v110 + (frac) arith_rshift((long)fc * (v111 - v110), _fixed_shift); frac v0 = v00 + (frac) arith_rshift((long)fb * (v01 - v00), _fixed_shift); frac v1 = v10 + (frac) arith_rshift((long)fb * (v11 - v10), _fixed_shift); rv = v0 + (frac) arith_rshift((long)fa * (v1 - v0), _fixed_shift); if (factor == fixed_1) pv[j] = rv; else pv[j] += (frac) arith_rshift((long)factor * (rv - pv[j]), _fixed_shift); } } } void gx_color_interpolate_linear(const fixed * pi, const gx_color_lookup_table * pclt, frac * pv) { interpolate_accum(pi, pclt, pv, fixed_1); }